Explainable AI for Structure–Property Analysis of FDM-Printed Biodegradable Polymer Nanocomposites
DOI:
https://doi.org/10.12974/2311-8717.2025.13.17Keywords:
Explainable AI, FDM printing, Biodegradable polymers, Nanocomposites, Structure–property analysis, SHAP analysis, Machine learningAbstract
Biodegradable polymer nanocomposites have gained significant attention for sustainable engineering applications, particularly when processed through fused deposition modeling (FDM) to create complex, customizable structures. Despite their potential, understanding how processing conditions and nanoscale reinforcements collectively influence the final properties remains a persistent challenge. The primary difficulty arises from the nonlinear, multivariate nature of structure–property interactions in FDM-printed biodegradable systems, which conventional modeling approaches often fail to capture or interpret. This study aims to develop an explainable artificial intelligence (XAI) framework capable of predicting and interpreting the mechanical and thermal behavior of biodegradable polymer nanocomposites fabricated via FDM. Biodegradable polymer matrices reinforced with 0–5 wt% nanoscale fillers were printed under controlled variations of nozzle temperature, layer height, infill density, and raster orientation. Machine learning models—including random forest and gradient boosting regressors—were trained on experimentally obtained structural, morphological, and thermal descriptors, while SHAP-based explainability tools were used to identify dominant contributors to property variation. The proposed framework achieved high predictive accuracy for tensile strength (R² = 0.93, RMSE = 3.1 MPa) and elastic modulus (R² = 0.91, RMSE = 45 MPa), and reliably predicted thermal stability (R² = 0.89 for T5%). Explainability analysis revealed that infill density, nanofiller dispersion quality, and crystallinity index contributed up to 78% of the variance in mechanical response, whereas extrusion temperature and filler–matrix interfacial compatibility dominated thermal behavior. These findings provide mechanistic insights into the structure–property relationships governing FDM-printed biodegradable nanocomposites and demonstrate the potential of XAI to guide systematic material design and process optimization.
References
Sabet, M. (2025). Exploring biodegradable polymer composites for sustainable packaging: a review on properties, manufacturing techniques, and environmental impacts. Iranian Polymer Journal, 34(1), 123-142. https://doi.org/10.1007/s13726-024-01365-y
Abdulsalam, L., Abubakar, S., Permatasari, I., Lawal, A. A., Uddin, S., Ullah, S., & Ahmad, I. (2025). Advanced Biocompatible and Biodegradable Polymers: A Review of Functionalization, Smart Systems, and Sustainable Applications. Polymers, 17(21), 2901. https://doi.org/10.3390/polym17212901
Olonisakin, K., Mohanty, A. K., Thimmanagari, M., & Misra, M. (2025). Recent advances in biodegradable polymer blends and their biocomposites: a comprehensive review. Green Chemistry, 27(38), 11656-11704. https://doi.org/10.1039/D5GC01294E
Kumar, S., & Kumar, R. (2025). A comprehensive study on Additive Manufacturing techniques, Machine Learning integration, and Internet of Things-driven sustainability opportunities. Journal of Materials Engineering and Performance, 1-68. https://doi.org/10.1007/s11665-025-10757-x
Xu, J., Harasek, M., & Gföhler, M. (2025). From soft lithography to 3D printing: current status and future of microfluidic device fabrication. Polymers, 17(4), 455. https://doi.org/10.3390/polym17040455
Ma, Q., Dong, K., Li, F., Jia, Q., Tian, J., Yu, M., & Xiong, Y. (2025). Additive manufacturing of polymer composite millimeter‐wave components: Recent progress, novel applications, and challenges. Polymer Composites, 46(1), 14-37. https://doi.org/10.1002/pc.28985
Sapkota, A., Ghimire, S. K., & Adanur, S. (2024). A review on fused deposition modeling (FDM)-based additive manufacturing (AM) methods, materials and applications for flexible fabric structures. Journal of Industrial Textiles, 54, 15280837241282110. https://doi.org/10.1177/15280837241282110
Jiang, Y., Islam, M. N., He, R., Huang, X., Cao, P. F., Advincula, R. C., ... & Choi, W. (2023). Recent advances in 3D printed sensors: materials, design, and manufacturing. Advanced Materials Technologies, 8(2), 2200492. https://doi.org/10.1002/admt.202200492
Kamath, S. S. (2025). Tailoring Synthetic Rubber via Direct Ink Writing: Designing and Optimizing Multifunctional Materials (Doctoral dissertation, The University of Akron).
Ceretti, D. V., Edeleva, M., Cardon, L., & D’hooge, D. R. (2023). Molecular pathways for polymer degradation during conventional processing, additive manufacturing, and mechanical recycling. Molecules, 28(5), 2344. https://doi.org/10.3390/molecules28052344
Tahir, M., & Seyam, A. F. (2025). Greening Fused Deposition Modeling: A Critical Review of Plant Fiber-Reinforced PLA-Based 3D-Printed Biocomposites. Fibers, 13(5), 64. https://doi.org/10.3390/fib13050064
Leśniowski, J., Stawiarski, A., & Barski, M. (2025). Enhancing the Performance of FFF-Printed Parts: A Review of Reinforcement and Modification Strategies for Thermoplastic Polymers. Materials, 18(22), 5185. https://doi.org/10.3390/ma18225185
Ayari, M., Yaseen, A. B., Smaili, I. H., Ali, M. K. M., Ali, A. A., Alhumaid, S., & Alsaadi, N. A. (2025). Determining the ideal FDM printing parameters to optimize thermal, mechanical and electrical properties of a novel PA6/Talc/CNT thermoplastic nanocomposite. Journal of Thermoplastic Composite Materials, 08927057251403952. https://doi.org/10.1177/08927057251403952
Chattrakul, K., Pholsuwan, A., Simpraditpan, A., Martwong, E., & Chailad, W. (2025). Sustainable Development of PLA-Based Biocomposites Reinforced with Pineapple Core Powder: Extrusion and 3D Printing for Thermal and Mechanical Performance. Polymers, 17(13), 1792. https://doi.org/10.3390/polym17131792
Li, Z., & Chang, L. (2025). Development of Wear-Resistant Polymeric Materials Using Fused Deposition Modelling (FDM) Technologies: A Review. Lubricants, 13(3), 98. https://doi.org/10.3390/lubricants13030098
Karuppusamy, M., Thirumalaisamy, R., Palanisamy, S., Nagamalai, S., Massoud, E. E. S., & Ayrilmis, N. (2025). A review of machine learning applications in polymer composites: advancements, challenges, and future prospects. Journal of Materials Chemistry A. https://doi.org/10.1039/D5TA00982K
Alagulakshmi, R., Ramalakshmi, R., Veerasimman, A., Palani, G., Selvaraj, M., & Basumatary, S. (2025). Advancements of machine learning techniques in fiber-filled polymer composites: a review. Polymer Bulletin, 82(7), 2059-2089. https://doi.org/10.1007/s00289-025-05638-1
Liang, Y., Wei, X., Peng, Y., Wang, X., & Niu, X. (2025). A review on recent applications of machine learning in mechanical properties of composites. Polymer Composites, 46(3), 1939-1960. https://doi.org/10.1002/pc.29082