Mechanical and Microstructural Performances of One-Part Alkali-Activated Fly Ash Mortars with Thermally Activated Palm Oil Decanter Cake
DOI:
https://doi.org/10.12974/2311-8717.2025.13.16Keywords:
One-part alkali-activation, Palm Oil Decanter Cake, Fly Ash, Mechanical, MechanicalMicrostructuralAbstract
The utilisation of waste-derived precursors in one-part alkali-activated materials offers a promising route towards more sustainable cementitious systems. This study evaluates calcined palm oil decanter cake (PODC) as a partial replacement for Class C fly ash in one-part alkali-activated mortars. PODC was thermally treated at 400 °C to reduce organic content while retaining biochar and incorporated at replacement levels of 5–20%. Fresh properties, physical characteristics, mechanical performance, and microstructural development were systematically assessed. Increasing PODC content reduced flowability and shortened setting time, attributed to the lower density, irregular particle morphology, and water-retention behaviour of biochar. Despite these changes, bulk density, water absorption, and apparent porosity were only marginally affected, indicating that matrix compactness was largely preserved. Strength development depended strongly on replacement level. Mortars with 10% and 15% PODC showed improved performance relative to the control, with 15% achieving the highest long-term compressive strength due to additional reactive Ca, K, and Si contributed by PODC. The 10% replacement provided a more balanced response, combining improved workability, stable early-age strength, and enhanced flexural and splitting tensile strengths. In contrast, 20% replacement led to strength reduction associated with increased porosity and a weaker interfacial transition zone. XRD, TG–DTA, and SEM–EDS confirmed substantial consumption of PODC phases and the formation of well-developed binding gels (C–S–H, C–A–S–H, and alkali-substituted (N,K)–A–S–H). Residual biochar acted as a preferential site for gel nucleation, promoting matrix cohesion. Overall, calcined PODC is an effective supplementary precursor for one-part fly ash-based alkaline-activated mortars, with an optimal replacement range of 10–15%.
References
M. Hanifa, R. Agarwal, U. Sharma, P.C. Thapliyal, L.P. Singh, A review on CO2 capture and sequestration in the construction industry: Emerging approaches and commercialised technologies, Journal of CO2 Utilization 67 (2023) 102292. https://doi.org/10.1016/j.jcou.2022.102292
A.A. Alrawashdeh, M. Zamorano, M. Alshaaer, M. Martín-Morales, Promoting the use of geopolymer and alkali-activated materials through the identification of critical factors and strategies, Journal of Building Engineering 98 (2024) 111078. https://doi.org/10.1016/j.jobe.2024.111078
Y.T. Chan, N.H. Abdul Shukor Lim, S.A. Abd Latif, S. Ishak, P.S. Lee, S.Q. Tan, A. Azhar, J.J. Moy, H.Y. Kek, Scientometric Review of One-Part Geopolymer Composites, in: M. Khandelwal, E.T. Mohamad, R. Bhatawdekar, D.J. Armaghani, P. Asteris, P.N. Shek, C.K. Ma (Eds.) Proceedings of the Innovative and Sustainable Infrastructure International Convention, Springer Nature Singapore, Singapore, 2025, pp. 407-416. https://doi.org/10.1007/978-981-96-3804-8_36
P. Nuaklong, A. Wongsa, V. Sata, K. Boonserm, J. Sanjayan, P. Chindaprasirt, Properties of high-calcium and low-calcium fly ash combination geopolymer mortar containing recycled aggregate, Heliyon 5(9) (2019) e02513. https://doi.org/10.1016/j.heliyon.2019.e02513
M.J. McCarthy, H.I. Yakub, L.J. Csetenyi, Impact of fly ash production and sourcing changes on chemical and physical aspects of concrete durability, Construction and Building Materials 342 (2022) 127313. https://doi.org/10.1016/j.conbuildmat.2022.127313
M.N.A. Razak, M.F. Ibrahim, P.L. Yee, M.A. Hassan, S. Abd-Aziz, Utilization of oil palm decanter cake for cellulase and polyoses production, Biotechnology and Bioprocess Engineering 17(3) (2012) 547-555.https://doi.org/10.1007/s12257-011-0590-9
P. Wu, K. Dai, Y. Shi, H. Rong, X. Zhang, Effect of biomass ash on hydration, properties and microstructure of ultra-high performance concrete, Journal of Building Engineering 104 (2025) 112276. https://doi.org/10.1016/j.jobe.2025.112276
N.A. Rahim, N.Y. Harun, A.A.H. Saeed, M.R. Bilad, Green route synthesis of amorphous silica from oil palm decanter cake: From literature review to experiments, Indonesian Journal of Science and Technology 8(2) (2023) 141-156. https://doi.org/10.17509/ijost.v8i2.53724
Y.T. Chan, N.H.A.S. Lim, S. Ishak, S.Q. Tan, S.A.A. Latif, S.P. Ngian, J.J. Moy, H.Y. Kek, A Review of Trends and Technologies Advancing Concrete with Biochar, in: K.-C. Tsai, M. Shahin, S.A. Kristiawan, A.R.M. Sam, P.D. Hai (Eds.) Proceedings of the 6th International Conference on Rehabilitation and Maintenance in Civil Engineering—Volume 1, Springer Nature Singapore, Singapore, 2025, pp. 191-199.
https://doi.org/10.1007/978-981-96-2143-9_21
G. Murali, L.S. Wong, A comprehensive review of biochar-modified concrete: Mechanical performance and microstructural insights, Construction and Building Materials 425 (2024) 135986. https://doi.org/10.1016/j.conbuildmat.2024.135986
H. Egodagamage, H.D. Yapa, H.A.D. Samith Buddika, S. Navaratnam, K. Nguyen, Effective use of biochar as an additive for alkali-activated slag mortar production, Construction and Building Materials 370 (2023) 130487. https://doi.org/10.1016/j.conbuildmat.2023.130487
ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, 2022, p. 5.
D. Chen, D. Liu, H. Zhang, Y. Chen, Q. Li, Bamboo pyrolysis using TG–FTIR and a lab-scale reactor: Analysis of pyrolysis behavior, product properties, and carbon and energy yields, Fuel 148 (2015) 79-86. https://doi.org/10.1016/j.fuel.2015.01.092
Z. Zhang, H. Wang, J.L. Provis, Quantitative study of the reactivity of fly ash in geopolymerization by FTIR, Journal of Sustainable Cement-Based Materials 1(4) (2012) 154-166. https://doi.org/10.1080/21650373.2012.752620
N. Kanjana, W. Maiaugree, P. Laokul, I. Chaiya, T. Lunnoo, P. Wongjom, Y. Infahsaeng, B. Thongdang, V. Amornkitbamrung, Fly ash boosted electrocatalytic properties of PEDOT:PSS counter electrodes for the triiodide reduction in dye-sensitized solar cells, Scientific Reports 13(1) (2023) 6012. https://doi.org/10.1038/s41598-023-33020-6
ASTM C430, Standard Test Method for Fineness of Hydraulic Cement by the 45-μm (No. 325) Sieve, ASTM International, West Conshohocken, 2017, p. 3.
C. Chandara, E. Sakai, K.A.M. Azizli, Z.A. Ahmad, S.F.S. Hashim, The effect of unburned carbon in palm oil fuel ash on fluidity of cement pastes containing superplasticizer, Construction and Building Materials 24(9) (2010) 1590-1593. https://doi.org/10.1016/j.conbuildmat.2010.02.036
M.S. Reza, S. Afroze, M.S.A. Bakar, R. Saidur, N. Aslfattahi, J. Taweekun, A.K. Azad, Biochar characterization of invasive Pennisetum purpureum grass: effect of pyrolysis temperature, Biochar 2(2) (2020) 239-251. https://doi.org/10.1007/s42773-020-00048-0
A.A. Maamoun, R.M. Abouomar, T.M. El-Basheer, M.A. Azab, E.G. Zaki, S.M. Elsaeed, A. Elkhateeb, Improving the acoustic performance of flexible polyurethane foam using biochar modified by (3-aminopropyl)trimethoxysilane coupling agent, Scientific Reports 14(1) (2024) 18382.
https://doi.org/10.1038/s41598-024-68039-w
R. Snellings, J. Chwast, Ö. Cizer, N. De Belie, Y. Dhandapani, P. Durdzinski, J. Elsen, J. Haufe, D. Hooton, C. Patapy, M. Santhanam, K. Scrivener, D. Snoeck, L. Steger, S. Tongbo, A. Vollpracht, F. Winnefeld, B. Lothenbach, Report of TC 238-SCM: hydration stoppage methods for phase assemblage studies of blended cements—results of a round robin test, Materials and Structures 51(4) (2018) 111. https://doi.org/10.1617/s11527-018-1237-5
ASTM C191, Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, ASTM International, West Conshohocken, 2021, p. 8.
ASTM C1437, Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM International, West Conshohocken, 2020, p. 2.
ASTM C642, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, West Conshohocken, 2021, p. 3.
ASTM C597, Standard Test Method for Ultrasonic Pulse Velocity Through Concrete, ASTM International, West Conshohocken, 2022, p. 4.
ASTM C109, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, 2022, p. 11.
ASTM C348, Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, ASTM International, West Conshohocken, 2021, p. 6.
ASTM C496, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, 2017, p. 4.
N. Roussel, T.L.H. Nguyen, O. Yazoghli, P. Coussot, Passing ability of fresh concrete: A probabilistic approach, Cement and Concrete Research 39(3) (2009) 227-232. https://doi.org/10.1016/j.cemconres.2008.11.009
M. Zhao, X. Zhang, Y. Zhang, Effect of free water on the flowability of cement paste with chemical or mineral admixtures, Construction and Building Materials 111 (2016) 571-579. https://doi.org/10.1016/j.conbuildmat.2016.02.057
S. Gupta, A. Kashani, Utilization of biochar from unwashed peanut shell in cementitious building materials – Effect on early age properties and environmental benefits, Fuel Processing Technology 218 (2021) 106841. https://doi.org/10.1016/j.fuproc.2021.106841
X. Yang, X.-Y. Wang, Hydration-strength-durability-workability of biochar-cement binary blends, Journal of Building Engineering 42 (2021) 103064. https://doi.org/10.1016/j.jobe.2021.103064
K. Tan, X. Pang, Y. Qin, J. Wang, Properties of cement mortar containing pulverized biochar pyrolyzed at different temperatures, Construction and Building Materials 263 (2020) 120616. https://doi.org/10.1016/j.conbuildmat.2020.120616
Y. Li, T. Song, H. Lin, J. Shen, Ambient-temperature properties and mechanistic insights of calcium oxalate-modified low-calcium fly ash geopolymer: Eliminating the need for high-temperature activation, Case Studies in Construction Materials 22 (2025) e04477. https://doi.org/10.1016/j.cscm.2025.e04477
P. Scanferla, A. Gharzouni, N. Texier-Mandoki, X. Bourbon, S. Rossignol, Effects of potassium-silicate, sands and carbonates concentrations on metakaolin-based geopolymers for high-temperature applications, Open Ceramics 10 (2022) 100257. https://doi.org/10.1016/j.oceram.2022.100257
S. Kushwah, S. Singh, R. Agarwal, N.S. Nighot, R. Kumar, H. Athar, S. Naik B, Mixture of biochar as a green additive in cement-based materials for carbon dioxide sequestration, Journal of Materials Science: Materials in Engineering 19(1) (2024) 27. https://doi.org/10.1186/s40712-024-00170-y
S. Gupta, A. Kashani, A.H. Mahmood, T. Han, Carbon sequestration in cementitious composites using biochar and fly ash – Effect on mechanical and durability properties, Construction and Building Materials 291 (2021) 123363. https://doi.org/10.1016/j.conbuildmat.2021.123363
Y. Zhou, S. Wang, L. Chen, Progress and prospects of biochar as concrete filler: A review, Alexandria Engineering Journal 128 (2025) 306-323. https://doi.org/10.1016/j.aej.2025.05.077
R. Patel, J. Stobbs, B. Acharya, Study of biochar in cementitious materials for developing green concrete composites, Scientific Reports 15(1) (2025) 22192. https://doi.org/10.1038/s41598-025-07210-3
F. Wu, Q. Zhang, S. Dong, Y. Cai, S. Yang, F. Xu, P. Luo, J. Jiang, Biochar modification enhances mechanical and durability properties of cement-based materials, Scientific Reports 15(1) (2025) 22174. https://doi.org/10.1038/s41598-025-06968-w
D. Wang, A. Jantwal, E. Kaynak, G. Sas, O. Das, Promoting internal curing in concrete by replacing sand with sustainable biochar, Case Studies in Construction Materials 22 (2025) e04542. https://doi.org/10.1016/j.cscm.2025.e04542
A. Sirico, P. Bernardi, C. Sciancalepore, F. Vecchi, A. Malcevschi, B. Belletti, D. Milanese, Biochar from wood waste as additive for structural concrete, Construction and Building Materials 303 (2021) 124500. https://doi.org/10.1016/j.conbuildmat.2021.124500
C.K. Yip, G.C. Lukey, J.S.J. van Deventer, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cement and Concrete Research 35(9) (2005) 1688-1697. https://doi.org/10.1016/j.cemconres.2004.10.042
M.A. Gómez-Casero, L. Pérez-Villarejo, P.J. Sánchez-Soto, D. Eliche-Quesada, Comparative study of alkali activated cements based on metallurgical slags, in terms of technological properties developed, Sustainable Chemistry and Pharmacy 29 (2022) 100746. https://doi.org/10.1016/j.scp.2022.100746
A. Hosan, S. Haque, F. Shaikh, Compressive behaviour of sodium and potassium activators synthetized fly ash geopolymer at elevated temperatures: A comparative study, Journal of Building Engineering 8 (2016) 123-130. https://doi.org/10.1016/j.jobe.2016.10.005
M.A.d.N. Moura, A.L. Moreno, G.C.d.S. Ferreira, Ultrasonic testing on evaluation of concrete residual compressive strength: A review, Construction and Building Materials 373 (2023) 130887. https://doi.org/10.1016/j.conbuildmat.2023.130887
A. Srivastava, S.K. Singh, C.S. Sharma, Correlation Between Ultrasonic Pulse Velocity (UPV) and Compressive Strength of Coal Bottom Ash Mortar, Journal of The Institution of Engineers (India): Series A 102(2) (2021) 421-433. https://doi.org/10.1007/s40030-021-00521-4
S.A. Omer, R. Demirboga, W.H. Khushefati, Relationship between compressive strength and UPV of GGBFS based geopolymer mortars exposed to elevated temperatures, Construction and Building Materials 94 (2015) 189-195. https://doi.org/10.1016/j.conbuildmat.2015.07.006
R. Demirboğa, İ. Türkmen, M.B. Karakoç, Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete, Cement and Concrete Research 34(12) (2004) 2329-2336. https://doi.org/10.1016/j.cemconres.2004.04.017
L.K. Bowlby, G.C. Saha, M.T. Afzal, Flexural strength behavior in pultruded GFRP composites reinforced with high specific-surface-area biochar particles synthesized via microwave pyrolysis, Composites Part A: Applied Science and Manufacturing 110 (2018) 190-196. https://doi.org/10.1016/j.compositesa.2018.05.003
S.C. Chin, P.K. Gunasekaran, J. Che, N. Anand, J. Gimbun, Bamboo biochar and carbonation enhanced the compressive and flexural strength of cement mortar, Next Materials 9 (2025) 100959. https://doi.org/10.1016/j.nxmate.2025.100959
M.G. Beltrán, A. Barbudo, F. Agrela, J.R. Jiménez, J. de Brito, Mechanical performance of bedding mortars made with olive biomass bottom ash, Construction and Building Materials 112 (2016) 699-707. https://doi.org/10.1016/j.conbuildmat.2016.02.065
A.M. Neville, Properties of concrete, Longman London1995.
M. Ghrici, S. Kenai, E. Meziane, Mechanical and durability properties of cement mortar with Algerian natural pozzolana, Journal of Materials Science 41(21) (2006) 6965-6972. https://doi.org/10.1007/s10853-006-0227-0
M. Cyr, R. Idir, T. Poinot, Properties of inorganic polymer (geopolymer) mortars made of glass cullet, Journal of Materials Science 47(6) (2012) 2782-2797. https://doi.org/10.1007/s10853-011-6107-2
S. Gupta, H.W. Kua, S.D. Pang, Biochar-mortar composite: Manufacturing, evaluation of physical properties and economic viability, Construction and Building Materials 167 (2018) 874-889. https://doi.org/10.1016/j.conbuildmat.2018.02.104
Y. Jia, H. Li, X. He, P. Li, Z. Wang, Effect of biochar from municipal solid waste on mechanical and freeze–thaw properties of concrete, Construction and Building Materials 368 (2023) 130374. https://doi.org/10.1016/j.conbuildmat.2023.130374
F. Bin Ahmed, K. Abid Ahsan, T. Shariff, S. Rahman Meem, Formulation of polynomial equation predicting the splitting tensile strength of concrete, Materials Today: Proceedings 38 (2021) 3269-3278. https://doi.org/10.1016/j.matpr.2020.10.017
N. Arιoglu, Z.C. Girgin, E. Arιoglu, Evaluation of ratio between splitting tensile strength and compressive strength for concretes up to 120 MPa and its application in strength criterion, ACI materials journal 103(1) (2006) 18-24. https://doi.org/10.14359/15123
ACI-318, Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, 2022.
G. Liao, D. Wang, W. Wang, Y. He, Microstructure, strength development mechanism, and CO2 emission analyses of alkali-activated fly ash-slag mortars, Journal of Cleaner Production 442 (2024) 141116. https://doi.org/10.1016/j.jclepro.2024.141116
I.P. Segura, T. Luukkonen, J. Yliniemi, H. Sreenivasan, A.J. Damø, L.S. Jensen, M. Canut, A.M. Kantola, V.-V. Telkki, P.A. Jensen, Comparison of One-Part and Two-Part Alkali-Activated Metakaolin and Blast Furnace Slag, Journal of Sustainable Metallurgy 8(4) (2022) 1816-1830. https://doi.org/10.1007/s40831-022-00606-9
Q. Zhang, G. Ye, Dehydration kinetics of Portland cement paste at high temperature, Journal of Thermal Analysis and Calorimetry 110(1) (2012) 153-158. https://doi.org/10.1007/s10973-012-2303-9
P. Chindasiriphan, H. Yokota, Y. Kawabata, P. Pimpakan, Combined effect of rice husk ash and superabsorbent polymer on self-healing capability of mortar, Construction and Building Materials 338 (2022) 127588. https://doi.org/10.1016/j.conbuildmat.2022.127588
N. Vogler, P. Drabetzki, M. Lindemann, H.-C. Kühne, Description of the concrete carbonation process with adjusted depth-resolved thermogravimetric analysis, Journal of Thermal Analysis and Calorimetry 147(11) (2022) 6167-6180. https://doi.org/10.1007/s10973-021-10966-1
S. Pilehvar, V.D. Cao, A.M. Szczotok, M. Carmona, L. Valentini, M. Lanzón, R. Pamies, A.-L. Kjøniksen, Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials, Construction and Building Materials 173 (2018) 28-39. https://doi.org/10.1016/j.conbuildmat.2018.04.016
T. Phoo-ngernkham, A. Maegawa, N. Mishima, S. Hatanaka, P. Chindaprasirt, Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer, Construction and Building Materials 91 (2015) 1-8. https://doi.org/10.1016/j.conbuildmat.2015.05.001
A. Sabbah, S. Zhutovsky, The influence of clinkering conditions and cooling rate on the phase composition of Belite-Ye’elimite-Ferrite (BYF) clinker, Materials Today: Proceedings (2023). https://doi.org/10.1016/j.matpr.2023.06.097
S. Kanchanasuta, N. Pisutpaisal, Waste utilization of palm oil decanter cake on biogas fermentation, International Journal of Hydrogen Energy 41(35) (2016) 15661-15666. https://doi.org/10.1016/j.ijhydene.2016.04.129
A.G. Díaz, S. Bueno, L.P. Villarejo, D. Eliche-Quesada, Improved strength of alkali activated materials based on construction and demolition waste with addition of rice husk ash, Construction and Building Materials 413 (2024) 134823. https://doi.org/10.1016/j.conbuildmat.2023.134823
M. Hossain, M. Karim, M. Elahi, M. Islam, M. Zain, Long-term durability properties of alkali-activated binders containing slag, fly ash, palm oil fuel ash and rice husk ash, Construction and Building Materials 251 (2020) 119094. https://doi.org/10.1016/j.conbuildmat.2020.119094
R. De Michele, B. Liguori, D. Luceri, G. Zecca, A. Largo, C. Koidis, C. Achillas, A. Kalaitzidis, C. Pascale, C. Menna, Wood ash-based materials with improved post-fire resistance for building and infrastructure applications, Resources, Conservation and Recycling 222 (2025) 108475. https://doi.org/10.1016/j.resconrec.2025.108475
O.J. Olatoyan, M.A. Kareem, A.U. Adebanjo, S.O.A. Olawale, K.T. Alao, Potential use of biomass ash as a sustainable alternative for fly ash in concrete production: A review, Hybrid Advances 4 (2023) 100076. https://doi.org/10.1016/j.hybadv.2023.100076
X. Yu, J. Shi, Z. He, Ç. Yalçınkaya, V. Revilla-Cuesta, O. Gencel, Review of the materials composition and performance evolution of green alkali-activated cementitious materials, Clean Technologies and Environmental Policy 25(5) (2023) 1439-1459. https://doi.org/10.1007/s10098-023-02478-3