Facile Fabrication of Renewable Wood-Derived Carbon/SiBCN Aerogel Composites for High-Performance Microwave Absorption

Authors

  • Yuan Ke Science and Technology on Advanced Composite in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150001, China
  • Shangbo Han Science and Technology on Advanced Composite in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150001, China
  • LingYu Yang Science and Technology on Advanced Composite in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150001, China
  • Xianqi Chen Science and Technology on Advanced Composite in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150001, China
  • Peitao Hu Science and Technology on Advanced Composite in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150001, China
  • Changqing Hong Science and Technology on Advanced Composite in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150001, China
  • Shun Dong Science and Technology on Advanced Composite in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150001, China

DOI:

https://doi.org/10.12974/2311-8717.2025.13.14

Keywords:

Composite, Microwave absorption, Reflection loss, Sol-gel and thermal treatment method, SiBCN aerogel, Wood-derived carbon

Abstract

With the rapid development of communication technologies, there is an urgent demand for high-performance microwave absorbing materials. Wood-derived carbon (WDC), characterized by its lightweight, renewable, low-cost, and tunable dielectric properties, is regarded as a core candidate for future green microwave absorbing materials. However, pure WDC exhibits relatively limited microwave absorption performance. Thus, this work demonstrates a facile strategy for integrating WDC with SiBCN aerogels via controlled growth within the WDC matrix, achieved through a two-step sol-gel process combined with thermal treatment. SiBCN aerogel particles formed a typical three-dimensional network structure within the pores of WDC. The resulting WDC/SiBCN aerogel composite achieved a minimum reflection loss (RLmin) of -46.0 dB at a thickness of only 1.71 mm, with an effective absorption bandwidth (EAB) of 3.60 GHz, which demonstrates significantly enhanced microwave absorption performance compared to existing similar systems. The performance improvement is attributed to the synergistic effects of dipole polarization, multiple reflection mechanisms, and excellent impedance matching between the SiBCN aerogel and wood-derived carbon. This research provides a novel strategy for fabricating WDC/SiBCN aerogel composites that combine renewability with superior microwave absorbing capabilities.

References

Wei, H., Z. Zhang, G. Hussain, L. Zhou, Q. Li, and K. (Ken) Ostrikov. Techniques to enhance magnetic permeability in microwave absorbing materials. Applied Materials Today, 2020, 19: 100596. https://doi.org/10.1016/j.apmt.2020.100596

Qin, G., X. Huang, X. Yan, Y. He, Y. Liu, L. Xia, et al. Carbonized wood with ordered channels decorated by NiCo2O4 for lightweight and high-performance microwave absorber. Journal of Advanced Ceramics, 2022, 11(1): 105-119. https://doi.org/10.1007/s40145-021-0520-z

Wu, P., J. Wang, J. Li, J. Feng, W. He, and H. Guo. Pseudo‐binary composite of Sr2TiMoO6-Al2O3 as a novel microwave absorbing material. Rare Metals, 2025, 44(1): 503-514. https://doi.org/10.1007/s12598-024-03013-z

Astafev, P. A., D. I. Zorin, J. A. Reizenkind, A. M. Lerer, K. P. Andryushin, A. A. Pavelko, et al. Microwave absorption properties of bismuth ferrite-based ceramics. Journal of Advanced Dielectrics, 2024, 14(06): 2450003. https://doi.org/10.1142/S2010135X24500036

Zhou M, Gu W, Wang G, et al. Sustainable wood-based composites for microwave absorption and electromagnetic interference shielding[J]. Journal of Materials Chemistry A, 2020, 8(46): 24267-24283. https://doi.org/10.1039/D0TA08372K

Xi, J., E. Zhou, Y. Liu, W. Gao, J. Ying, Z. Chen, et al. Wood-based straightway channel structure for high performance microwave absorption. Carbon, 2017, 124: 492-498. https://doi.org/10.1016/j.carbon.2017.07.088

Akbar, Muh. I., B. Armynah, and D. Tahir. Comprehensive review of wood-based composites as microwave absorbers: Utilizing wood-derived materials such as carbon, metal/metal oxides, and polymer composites as fillers. Industrial Crops and Products, 2024, 220: 119397. https://doi.org/10.1016/j.indcrop.2024.119397

Hu P, Dong S, Li X, et al. A low-cost strategy to synthesize MnO nanorods anchored on 3D biomass-derived carbon with superior microwave absorption properties[J]. Journal of Materials Chemistry C, 2019, 7(30): 9219-9228. https://doi.org/10.1039/C9TC02182E

Dong, S., W. Tang, P. Hu, X. Zhao, X. Zhang, J. Han, et al. Achieving excellent electromagnetic wave absorption capabilities by construction of MnO nanorods on porous carbon composites derived from natural wood via a simple route. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11795-11805. https://doi.org/10.1021/acssuschemeng.9b02100

Lou, Z., C. Yuan, Y. Zhang, Y. Li, J. Cai, L. Yang, et al. Synthesis of porous carbon matrix with inlaid Fe3C/Fe3O4 micro-particles as an effective electromagnetic wave absorber from natural wood shavings. Journal of Alloys and Compounds, 2019, 775: 800-809. https://doi.org/10.1016/j.jallcom.2018.10.213

Yuan D, Chen Z, Cai C, et al. Microstructures, absorption and adhesion evolution of FeCoCr/silicone resin coatings at elevated temperature[J]. Frontiers in Materials, 2023, 10: 1168418.https://doi.org/10.3389/fmats.2023.1168418

Zhao X, Li J, Li N, et al. Polymer-Derived SiOC Ceramics by Digital Light Processing-Based Additive Manufacturing[J]. Applied Sciences, 2025, 15(6): 2921.

https://doi.org/10.3390/app15062921

Zhang, X., L. Yang, S. Han, S. Dong, G. Chen, and J. Liu. Multifunctional mullite fiber reinforced SiBCN ceramic aerogel with excellent microwave absorption and thermal insulation performance. Ceramics International, 2024, 50(19): 35145-35153. https://doi.org/10.1016/j.ceramint.2024.06.321

Tang, L., S. Chen, D. Wang, Z. Chen, J. Xue, Z. Wang, et al. Zirconium carbide modified SiOC composites with porous lamellar structures for broadband microwave absorption and thermal stability. Ceramics International, 2024, 50(20): 39243-39252. https://doi.org/10.1016/j.ceramint.2024.07.295

Ramlow, H., L. L. Silva, C. Marangoni, M. R. Baldan, and R. A. F. Machado. Corrosion and heat-resistant SiCN/C as lightweight fibers for microwave absorption and electromagnetic field shielding in Ku-band. Diamond and Related Materials, 2024, 144: 110985. https://doi.org/10.1016/j.diamond.2024.110985

Lusha, Z., T. Zicheng, R. Tusiime, W. Shaofei, F. Ningning, Z. Yifan, et al. Synthesis and electromagnetic wave absorbing properties of a polymer-derived SiBNC ceramic aerogel. Ceramics International, 2021, 47(13): 18984-18990. https://doi.org/10.1016/j.ceramint.2021.03.242

Jiang, J., L. Yan, M. Song, Y. Li, A. Guo, H. Du, et al. Thermally insulated C/SiC/SiBCN composite ceramic aerogel with enhanced electromagnetic wave absorption performance. Ceramics International, 2025, 51(1): 17-24. https://doi.org/10.1016/j.ceramint.2024.10.286

Song, C., Y. Liu, F. Ye, J. Wang, and L. Cheng. Microstructure and electromagnetic wave absorption property of reduced graphene oxide-SiCnw/SiBCN composite ceramics. Ceramics International, 2020, 46(6): 7719-7732. https://doi.org/10.1016/j.ceramint.2019.11.275

Chen, Q., D. Li, Z. Yang, D. Jia, Y. Zhou, R. Riedel, et al. SiBCN-reduced graphene oxide (rGO) ceramic composites derived from single-source-precursor with enhanced and tunable microwave absorption performance. Carbon, 2021, 179: 180-189. https://doi.org/10.1016/j.carbon.2021.03.057

Wang, Y., C. Luo, Y. Wu, X. Hu, L. Wang, X. Chen, et al. High temperature stable, amorphous SiBCN microwave absorption ceramics with tunable carbon structures derived from divinylbenzene crosslinked hyperbranched polyborosilazane. Carbon, 2023, 213: 118189. https://doi.org/10.1016/j.carbon.2023.118189

Sahoo, P., L. Saini, and A. Dixit. Microwave-absorbing materials for stealth application: A holistic overview. Oxford Open Materials Science, 2023, 3(1): itac012. https://doi.org/10.1093/oxfmat/itac012

Zeng, X., X. Cheng, R. Yu, and G. D. Stucky. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon, 2020, 168: 606-623. https://doi.org/10.1016/j.carbon.2020.07.028

Liu, J., L. Lin, J. Zhang, H. Zeng, and J. Shi. A novel process for improving the pore structure and electrochemical performance of wood-derived carbon/MnO composites. Wood Science and Technology, 2024, 58(5): 1629-1644. https://doi.org/10.1007/s00226-024-01585-8

Ziherl, S., J. Bajc, and M. Čepič. Refraction and absorption of microwaves in wood. European Journal of Physics, 2013, 34(2): 449-459. https://doi.org/10.1088/0143-0807/34/2/449

Gou, G., W. Hua, K. Liu, F. Cheng, and X. Xie. Bimetallic MOF@wood-derived hierarchical porous carbon composites for efficient microwave absorption. Diamond and Related Materials, 2024, 141: 110688. https://doi.org/10.1016/j.diamond.2023.110688

Lv, Z., C. Lan, Y. Cao, M. Fan, Y. Ke, W. Guo, et al. One-step preparation of N-doped porous carbon materials with excellent microwave absorption properties based on methylene blue saturated wood-based activated carbon. Carbon Letters, 2025, 35(1): 235-244. https://doi.org/10.1007/s42823-024-00786-2

Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical review B, 2000, 61(20): 14095. https://doi.org/10.1103/PhysRevB.61.14095

Xiao, J., B. Wen, X. Liu, Y. Chen, J. Niu, S. Yang, et al. In-situ growth of carbon nanotubes for the modification of wood-derived biomass porous carbon to achieve efficient low/mid-frequency electromagnetic wave absorption. Journal of Colloid and Interface Science, 2024, 676: 33-44. https://doi.org/10.1016/j.jcis.2024.07.096

Ba, E. C. T., M. R. Dumont, P. S. Martins, B. Da Silva Pinheiro, M. P. M. Da Cruz, and J. W. Barbosa. Deconvolution process approach in Raman spectra of DLC coating to determine the sp3 hybridization content using the ID/IG ratio in relation to the quantification determined by X-ray photoelectron spectroscopy. Diamond and Related Materials, 2022, 122: 108818. https://doi.org/10.1016/j.diamond.2021.108818

Wang, H., F. Meng, F. Huang, C. Jing, Y. Li, W. Wei, et al. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Applied Materials & Interfaces, 2019, 11(12): 12142-12153. https://doi.org/10.1021/acsami.9b01122

Du, L., J. Zhang, Q. Zhou, Y. Li, Y. Zhang, X. Wang, et al. Hierarchical CNTs/PyC/SiBCN foam with tunable microwave absorption properties conspired by melamine-derived pyrolyzed carbon and carbon nanotubes. Carbon, 2025, 234: 120030. https://doi.org/10.1016/j.carbon.2025.120030

Tai, F. C., S. C. Lee, J. Chen, C. Wei, and S. H. Chang. Multipeak fitting analysis of Raman spectra on DLCH film. Journal of Raman Spectroscopy, 2009, 40(8): 1055-1059. https://doi.org/10.1002/jrs.2234

Elmahaishi, M. F., R. S. Azis, I. Ismail, and F. D. Muhammad. A review on electromagnetic microwave absorption properties: Their materials and performance. Journal of Materials Research and Technology, 2022, 20: 2188-2220. https://doi.org/10.1016/j.jmrt.2022.07.140

Wang, J., M. Xia, J. Sun, H. Zhang, Q. Sun, J. Wang, et al. Hybrid bilayers of carbon/NiBr2 anchoring on FeSiB surface for enhanced microwave absorption coupling with smart discoloration. Rare Metals, 2025, 44(1): 489-502. https://doi.org/10.1007/s12598-024-02913-4

Xu, C., X. Xiong, Y. Du, X. Lv, Z. Wu, K. Luo, et al. Dual‐coupling networks engineering of self‐assembled ferromagnetic microspheres with enhanced interfacial polarization and magnetic interaction for microwave absorption. InfoMat, 2025, 7(4): e12645. https://doi.org/10.1002/inf2.12645

Green, M., L. Tian, P. Xiang, J. Murowchick, X. Tan, and X. Chen. FeP nanoparticles: A new material for microwave absorption. Materials Chemistry Frontiers, 2018, 2(6): 1119-1125.

https://doi.org/10.1039/C8QM00003D

Yang, D., S. Dong, J. Xin, C. Liu, P. Hu, L. Xia, et al. Robust and thermostable C/SiOC composite aerogel for efficient microwave absorption, thermal insulation and flame retardancy. Chemical Engineering Journal, 2023, 469: 143851. https://doi.org/10.1016/j.cej.2023.143851

Liu, J., Y. Feng, C. Liu, Y. Tong, H. Sun, H. Peng, et al. Novel SiBCN composite fibers with broadband and strong electromagnetic wave absorption performance. Journal of Alloys and Compounds, 2022, 912: 165190. https://doi.org/10.1016/j.jallcom.2022.165190

Cheng, Z., Y. Liu, F. Ye, C. Zhang, H. Qin, J. Wang, et al. Microstructure and EMW absorbing properties of SiCnw/SiBCN-Si3N4 ceramics annealed at different temperatures. Journal of the European Ceramic Society, 2020, 40(4): 1149-1158. https://doi.org/10.1016/j.jeurceramsoc.2019.11.040

Zhao, M., Y. Liu, N. Chai, H. Qin, X. Liu, F. Ye, et al. Effect of SiBCN content on the dielectric and EMW absorbing properties of SiBCN-Si3N4 composite ceramics. Journal of the European Ceramic Society, 2018, 38(4): 1334-1340. https://doi.org/10.1016/j.jeurceramsoc.2017.10.021

Li, J., Y. Hong, S. He, W. Li, H. Bai, Y. Xia, et al. A neutron diffraction investigation of high valent doped barium ferrite with wideband tunable microwave absorption. Journal of Advanced Ceramics, 2022, 11(2): 263-272. https://doi.org/10.1007/s40145-021-0529-3

Panda, M., A. K. Thakur, and V. Srinivas. Thermal effects on the percolation behavior of polyvinylidene fluoride/nickel composites. Journal of Applied Polymer Science, 2010, 117(5): 3023-3028. https://doi.org/10.1002/app.31223

Liu, M., Y. Miao, G. Wang, H. Gong, M. Sheng, J. Jing, et al. Polymer-derived NixSiy/graphene/SiCN composite ceramics with enhanced electromagnetic wave absorption performance. Ceramics International, 2023, 49(17): 28233-28245. https://doi.org/10.1016/j.ceramint.2023.06.078

Wen, L.-C., L. Guan, J.-X. Zhang, Y.-J. Zhu, P. Chen, J.-L. Suo, et al. Defect engineering boosts microwave absorption in TaxNb1-xC nanowires. Rare Metals, 2025, 44(4): 2577-2588. https://doi.org/10.1007/s12598-024-03087-9

Ding, C., C. Shao, Z. Wang, Z. Li, X. Guo, X. Ren, et al. Leaf vein micronetwork engineering enhanced energy conversion strategy for C‐band ultralight yet tunable microwave absorption. Rare Metals, 2025, 44(9): 6513-6530. https://doi.org/10.1007/s12598-025-03360-5

Wang, C., P. Chen, X. Li, Y. Zhu, and B. Zhu. Enhanced electromagnetic wave absorption for Y2O3-doped SiBCN ceramics. ACS Applied Materials & Interfaces, 2021, 13(46): 55440-55453. https://doi.org/10.1021/acsami.1c16909

Huang, M., L. Wang, W. You, and R. Che. Single zinc atoms anchored on MOF‐derived N‐doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber. Small, 2021, 17(30): 2101416. https://doi.org/10.1002/smll.202101416

Zhao, H., H. Gao, S. Jin, Y. Yao, X. Li, J. Zhang, et al. Exploring interfacial engineering in 3D porous, lightweight ZnFe2O4/rGO aerogel for electromagnetic wave absorption. Journal of Alloys and Compounds, 2023, 957: 170326. https://doi.org/10.1016/j.jallcom.2023.170326

Liu, C., Y. Tong, C. Liu, M. Xu, H. Sun, S. Wu, et al. Heterogeneous interface engineering of SiBCN/Ni fibers extends enhanced electromagnetic wave absorption properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 695: 134234. https://doi.org/10.1016/j.colsurfa.2024.134234

Zhou W, Yu Y, Xiong X, et al. Fabrication of α-Fe/Fe3C/woodceramic nanocomposite with its improved microwave absorption and mechanical properties[J]. Materials, 2018, 11(6): 878. https://doi.org/10.3390/ma11060878

Xu L, Xiong Y, Dang B, et al. In-situ anchoring of Fe3O4/ZIF-67 dodecahedrons in highly compressible wood aerogel with excellent microwave absorption properties[J]. Materials & Design, 2019, 182: 108006. https://doi.org/10.1016/j.matdes.2019.108006

Dang B, Chen Y, Shen X, et al. Fabrication of a nano-ZnO/polyethylene/wood-fiber composite with enhanced microwave absorption and photocatalytic activity via a facile hot-press method[J]. Materials, 2017, 10(11): 1267. https://doi.org/10.3390/ma10111267

Dang B, Chen Y, Wang H, et al. Preparation of high mechanical performance nano-Fe3O4/wood fiber binderless composite boards for electromagnetic absorption via a facile and green method[J]. Nanomaterials, 2018, 8(1): 52. https://doi.org/10.3390/nano8010052

C. Luo, T. Jiao, J. Gu, Y. Tang, J. Kong, Graphene shield by SiBCN ceramic: a promising high-temperature electromagnetic wave-absorbing material with oxidation resistance, ACS Appl. Mater. Interfaces 10 (45) (2018) 39307-39318. https://doi.org/10.1021/acsami.8b15365

F. Ye, L. Zhang, X. Yin, Y. Zhang, L. Kong, Y. Liu, L. Cheng, Dielectric and microwave-absorption properties of SiC nanoparticle/SiBCN composite ceramics, J. Eur. Ceram. Soc. 34 (2) (2014) 205-215. https://doi.org/10.1016/j.jeurceramsoc.2013.08.005

Dong, S., P. Hu, X. Li, C. Hong, X. Zhang, and J. Han. NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chemical Engineering Journal, 2020, 398: 125588. https://doi.org/10.1016/j.cej.2020.125588

Cao, Q., J. Zhang, H. Zhang, J. Xu, and R. Che. Dual-surfactant templated hydrothermal synthesis of CoSe2 hierarchical microclews for dielectric microwave absorption. Journal of Advanced Ceramics, 2022, 11(3): 504-514. https://doi.org/10.1007/s40145-021-0545-3

Zhao, L., Q. Zhuang, G. Hu, B. Zhang, and S. Pan. Ni/porous carbon-based composite derived from poplar wood with ultrabroad band microwave absorption performance. ECS Journal of Solid State Science and Technology, 2024, 13(2): 021004. https://doi.org/10.1149/2162-8777/ad26a4

Downloads

Published

2025-12-29

How to Cite

Ke, Y. ., Han, S. ., Yang, L. ., Chen, X. ., Hu, P. ., Hong, C. ., & Dong, S. . (2025). Facile Fabrication of Renewable Wood-Derived Carbon/SiBCN Aerogel Composites for High-Performance Microwave Absorption. Journal of Composites and Biodegradable Polymers, 13, 162–173. https://doi.org/10.12974/2311-8717.2025.13.14

Issue

Section

Articles