Nickel Loaded into Three-Dimensional Porous Composite Materials Doped by Nitrogen Atoms for Accelerating the Conversion Process of Polysulfides

Authors

  • Jixin Lu "State Key Laboratory of Advanced Optical Polymer and Manufacturing Technology, Key Laboratory of Rubber-plastics, Ministry of Education, Shandong Key Laboratory of High Performance Polyolefin Materials and Recycling, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China", "Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju 54896, Republic of Korea" & "Enchem Tianrun New Energy Materials (Shandong) Co., Ltd., Zaozhuang 277800, Shandong Province, China"
  • Mengyuan Zhu "State Key Laboratory of Advanced Optical Polymer and Manufacturing Technology, Key Laboratory of Rubber-plastics, Ministry of Education, Shandong Key Laboratory of High Performance Polyolefin Materials and Recycling, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China", "Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju 54896, Republic of Korea" & "Enchem Tianrun New Energy Materials (Shandong) Co., Ltd., Zaozhuang 277800, Shandong Province, China"
  • Lukuan Wang "State Key Laboratory of Advanced Optical Polymer and Manufacturing Technology, Key Laboratory of Rubber-plastics, Ministry of Education, Shandong Key Laboratory of High Performance Polyolefin Materials and Recycling, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China" & "Enchem Tianrun New Energy Materials (Shandong) Co., Ltd., Zaozhuang 277800, Shandong Province, China"
  • Yangyang Cui "State Key Laboratory of Advanced Optical Polymer and Manufacturing Technology, Key Laboratory of Rubber-plastics, Ministry of Education, Shandong Key Laboratory of High Performance Polyolefin Materials and Recycling, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China" & "Enchem Tianrun New Energy Materials (Shandong) Co., Ltd., Zaozhuang 277800, Shandong Province, China"
  • Chunjie Wu "State Key Laboratory of Advanced Optical Polymer and Manufacturing Technology, Key Laboratory of Rubber-plastics, Ministry of Education, Shandong Key Laboratory of High Performance Polyolefin Materials and Recycling, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China" & "Enchem Tianrun New Energy Materials (Shandong) Co., Ltd., Zaozhuang 277800, Shandong Province, China"
  • Qiaoling Bi "State Key Laboratory of Advanced Optical Polymer and Manufacturing Technology, Key Laboratory of Rubber-plastics, Ministry of Education, Shandong Key Laboratory of High Performance Polyolefin Materials and Recycling, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China" & "Enchem Tianrun New Energy Materials (Shandong) Co., Ltd., Zaozhuang 277800, Shandong Province, China"
  • Shaoyu Jiang "State Key Laboratory of Advanced Optical Polymer and Manufacturing Technology, Key Laboratory of Rubber-plastics, Ministry of Education, Shandong Key Laboratory of High Performance Polyolefin Materials and Recycling, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China" & "Enchem Tianrun New Energy Materials (Shandong) Co., Ltd., Zaozhuang 277800, Shandong Province, China"
  • Qing Zhao "State Key Laboratory of Advanced Optical Polymer and Manufacturing Technology, Key Laboratory of Rubber-plastics, Ministry of Education, Shandong Key Laboratory of High Performance Polyolefin Materials and Recycling, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China", "Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju 54896, Republic of Korea" & "Enchem Tianrun New Energy Materials (Shandong) Co., Ltd., Zaozhuang 277800, Shandong Province, China"
  • Jianxin Zhao "State Key Laboratory of Advanced Optical Polymer and Manufacturing Technology, Key Laboratory of Rubber-plastics, Ministry of Education, Shandong Key Laboratory of High Performance Polyolefin Materials and Recycling, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China" & "Enchem Tianrun New Energy Materials (Shandong) Co., Ltd., Zaozhuang 277800, Shandong Province, China"
  • Linjing Liu "State Key Laboratory of Advanced Optical Polymer and Manufacturing Technology, Key Laboratory of Rubber-plastics, Ministry of Education, Shandong Key Laboratory of High Performance Polyolefin Materials and Recycling, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China" & "Enchem Tianrun New Energy Materials (Shandong) Co., Ltd., Zaozhuang 277800, Shandong Province, China"
  • Cunguo Wang "State Key Laboratory of Advanced Optical Polymer and Manufacturing Technology, Key Laboratory of Rubber-plastics, Ministry of Education, Shandong Key Laboratory of High Performance Polyolefin Materials and Recycling, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China" & "Enchem Tianrun New Energy Materials (Shandong) Co., Ltd., Zaozhuang 277800, Shandong Province, China"
  • Aihua He "State Key Laboratory of Advanced Optical Polymer and Manufacturing Technology, Key Laboratory of Rubber-plastics, Ministry of Education, Shandong Key Laboratory of High Performance Polyolefin Materials and Recycling, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China" & "Enchem Tianrun New Energy Materials (Shandong) Co., Ltd., Zaozhuang 277800, Shandong Province, China"

DOI:

https://doi.org/10.12974/2311-8717.2025.13.13

Keywords:

Shuttle effect, ZIF-8, Metal organic framework materials, Lithium sulfur batteries, Composite materials

Abstract

The industrial deployment of lithium–sulfur batteries remains hindered by sulfur’s intrinsically low electrical conductivity and the pronounced shuttle effect that arises during cycling. In this study, a novel porous composite material (GA/Ni-CN) was prepared by loading the nickel metal catalyst onto nitrogen-doped three-dimensional graphene aerogel carbon-based materials. Graphene aerogel and ZIF-derived nitrogen-doped carbon framework composites provide abundant polar sites while maintaining a stable three-dimensional porous structure, enhancing polysulfide adsorption. A small amount of metallic nickel phase serves as the electrocatalytic center, accelerating the redox conversion of polysulfides while preventing catalyst overconsumption. The battery assembled with S@GA/Ni-CN as the cathode material exhibits excellent electrochemical performance and shows high electrochemistry response in cyclic voltammetry testing. In addition, the initial discharge specific capacity got to 1482 mAh/g at 0.2 C current density, substantially surpassing the sulfur utilization efficiency of conventional carbon-based materials.

References

Lu, J.; Zhu, M.; Kim, M.; He, A.; Wang, C.; Kim, T. H.; Lee, S. H. Catalytic nickel nanoparticles embedded on ZIF-8 backbone for accelerating polysulfide conversion in lithium-sulfur batteries. J. Power Sources 2025, 647, 237269. https://doi.org/10.1016/j.jpowsour.2025.237269

Li, H.; Li, L.; Li, X.; Ou, Y.; Yuan, W. Stepwise regulation of polysulfide conversion by in situ constructed ZnSe-MoSe2 heterojunctions in N-doped hollow carbon nanocages for lithium-sulfur batteries. Applied Catalysis B: Environment and Energy 2025, 125631. https://doi.org/10.1016/j.apcatb.2025.125631

Chen, Y.; Wang, T.; Tian, H.; Su, D.; Zhang, Q.; Wang, G. Advances in lithium–sulfur batteries: from academic research to commercial viability. Adv. Mater. 2021, 33 (29), 2003666. https://doi.org/10.1002/adma.202003666

Zuo, Y. Z.; Ren, P. J.; Zhao, M.; Su, W. M.; Chen, Y. B.; Tang, Y. F.; Chen, Y. F. Stable lithium-sulfur batteries with high sulfur content fabricated by ultralight ochroma lagopus-derived carbon with dopamine shell as sulfur host. J. Alloy. Compd. 2020, 819, 10. https://doi.org/10.1016/j.jallcom.2019.152995

Lu, J.; Zhu, M.; Wang, C.; Wang, L.; Wu, C.; Cui, Y.; Bi, Q.; Jiang, S.; Zhao, Q.; Li, X. Nitrogen-doped 3D porous composite GA/HNBRL used as a self-supporting electrode to enhance the adsorption and conversion of polysulfide in high-capacity Li–S batteries. ACS Sustainable Chemistry & Engineering 2025, 13, 5c06841. https://doi.org/10.2139/ssrn.5225891

Wang, C.; Song, H.; Yu, C.; Ullah, Z.; Guan, Z.; Chu, R.; Zhang, Y.; Zhao, L.; Li, Q.; Liu, L. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J. Mater. Chem. A 2020, 8 (6), 3421-3430. https://doi.org/10.1039/C9TA11680J

Chu, R.; Nguyen, T. T.; Bai, Y.; Kim, N. H.; Lee, J. H. Uniformly controlled treble boundary using enriched adsorption sites and accelerated catalyst cathode for robust lithium–sulfur batteries. Adv. Energy Mater. 2022, 12 (9), 2102805. https://doi.org/10.1002/aenm.202102805

Luo, X; Pu, Z; Li, H; Li, Z; Yang, X; Fu, A; Li, H. Co2P nanoparticles decorated porous carbon nanofibers as self-standing cathode for high-performance Li–S batteries. ACS Appl. Mater. Interfaces 2025, 17, 26, 38019–38030. https://doi.org/10.1021/acsami.5c06263

Yu, B.; Chen, D.; Wang, Z.; Qi, F.; Zhang, X.; Wang, X.; Hu, Y.; Wang, B.; Zhang, W.; Chen, Y. Mo2C quantum dots@ graphene functionalized separator toward high-current-density lithium metal anodes for ultrastable Li-S batteries. Chem. Eng. J. 2020, 399, 125837.https://doi.org/10.1016/j.cej.2020.125837

Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. A high‐efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li–S batteries. Adv. Mater. 2020, 32 (32), 2002168. https://doi.org/10.1002/adma.202002168

Wang, J. N.; Yi, S. S.; Liu, J. W.; Sun, S. Y.; Liu, Y. P.; Yang, D. W.; Xi, K.; Gao, G. X.; Abdelkader, A.; Yan, W.; et al. Suppressing the shuttle effect and dendrite growth in lithium-sulfur batteries. ACS Nano, 2020, 14 (8), 9819-9831. https://doi.org/10.1021/acsnano.0c02241

Luo, X; Pu, Z; Li, H; Zhao, E; Yang, X; Fu, A; Li, H. Preparation of TiO2 nanoparticles decorated porous carbon via a pseudo co-templating strategy and their application as substrates for high performance cathode of Li-S batteries. J. Energy Storage 2024, 102, 114219. https://doi.org/10.1016/j.est.2024.114219

Liang, Z.; Shen, J.; Xu, X.; Li, F.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Advances in the development of single‐atom catalysts for high‐energy‐density lithium–sulfur batteries. Adv. Mater. 2022, 34 (30), 2200102. https://doi.org/10.1002/adma.202200102

Liu, J.; Lin, C.; Xie, Q.; Peng, D. L.; Xie, R. J. Core–shell zeolite imidazole framework-derived ZnSe@ CoSe2/C heterostructure enabling robust polysulfide adsorption and rapid Li+ diffusion in high-rate and high-loading lithium–sulfur batteries. Chem. Eng. J. 2022, 430, 133099. https://doi.org/10.1016/j.cej.2021.133099

Fan, W.; Chu, R.; Wang, C.; Song, H.; Ding, Y.; Li, X.; Jiang, M.; Li, Q.; Liu, L.; He, A. Synthesis and characteristic of the ternary composite electrode material PTCDA/CNT@ MPC and its electrochemical performance in sodium ion battery. Composites Part B: Engineering 2021, 226, 109329. https://doi.org/10.1016/j.compositesb.2021.109329

Li, H.; Wang, Z.; Dang, L.; Yu, K.; Yang, R.; Fu, A.; Liu, X.; Guo, Y.-G.; Li, H.; Zhao, X. S. Si nanoparticles enclosed in hierarchically structured dual-component porous carbon as superior anode for lithium-ion batteries: structure formation and properties investigation. Energy Storage Mater. 2024, 70, 103547. https://doi.org/10.1016/j.ensm.2024.103547

Bai, Y. Q.; Wang, C. G.; Li, X.; Fan, W. Q.; Song, P. H.; Gu, Y. C.; Liu, F. Q.; Liu, G. Y. Preparation and electrochemical properties of S@C composite material with high capacity and ordered alignment of channels. Chemical J ournal of Chinese Universities 2020, 41, 1306-1312.

Ren, Z.; Li, J.; Gong, Y.; Li, X.; Liang, J.; Li, Y.; He, C.; Zhang, Q.; Ren, X. Efficient capture and conversion of polysulfides by zinc protoporphyrin framework-embedded triple-layer nanofiber separator for advanced Li-S batteries. Journal of Colloid and Interface Science 2022, 609, 43-53. https://doi.org/10.1016/j.jcis.2021.12.003

Shi, M.; Liu, Z.; Zhang, S.; Liang, S.; Jiang, Y.; Bai, H.; Jiang, Z.; Chang, J.; Feng, J.; Chen, W. A Mott–Schottky heterogeneous layer for Li–S batteries: enabling both high stability and commercial‐sulfur utilization. Adv. Energy Mater. 2022, 12 (14), 2103657. https://doi.org/10.1002/aenm.202103657

Wang, M. Y.; Bai, Z. C.; Yang, T.; Nie, C. H.; Xu, X.; Wang, Y. X.; Yang, J.; Dou, S. X.; Wang, N. N. Advances in high sulfur loading cathodes for practical lithium-sulfur batteries. Adv. Energy Mater. 2022, 12 (39), 25. https://doi.org/10.1002/aenm.202201585

Wang, Z. K.; Li, Y.; Ji, H. Q.; Zhou, J. Q.; Qian, T.; Yan, C. L. Unity of opposites between soluble and insoluble lithium polysulfides in lithium-sulfur batteries. Adv. Mater. 2022, 34 (47), 17. https://doi.org/10.1002/adma.202203699

Wu, Y.; Li, D.; Pan, J.; Sun, Y.; Huang, W.; Wu, M.; Zhang, B.; Pan, F.; Shi, K.; Liu, Q. Realizing fast polysulfides conversion within yolk-shelled NiO@HCSs nanoreactor as cathode host for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2022, 10 (30), 16309-16318. https://doi.org/10.1039/D2TA03421B

Xiang, M.; Li, J.; Feng, S.; Zhang, H.; Cao, X.; Zeng, Y.; Li, X.; Xiao, J. Synergistic capture and conversion of polysulfides in cathode composites with multidimensional framework structures. Journal of Colloid and Interface Science 2022, 624, 471-481. https://doi.org/10.1016/j.jcis.2022.05.118

Yang, X. Y.; Li, R.; Yang, J. X.; Liu, H. Z.; Luo, T.; Wang, X. L.; Yang, L. A novel route to constructing high-efficiency lithium sulfur batteries with spent graphite as the sulfur host. Carbon 2022, 199, 215-223. https://doi.org/10.1016/j.carbon.2022.06.067

Zhang, W.; Hong, D.; Su, Z.; Yi, S.; Tian, L.; Niu, B.; Zhang, Y.; Long, D. Tailored ZnO-ZnS heterostructure enables a rational balancing of strong adsorption and high catalytic activity of polysulfides for Li-S batteries. Energy Storage Mater. 2022, 53, 404-414. https://doi.org/10.1016/j.ensm.2022.09.018

Bai, Y.; Nguyen, T. T.; Chu, R.; Song, H.; Kim, N. H.; Lee, J. H. Heterostructured TiN/TiO2 on the hierarchical N-doped carbon for enhancing the polysulfide immobilization and sulfur reduction in lithium-sulfur battery. Chem. Eng. J. 2023, 476, 146581. https://doi.org/10.1016/j.cej.2023.146581

Chu, R.; Nguyen, T. T.; Song, H.; Austeria, M.; Bai, Y.; Kim, D. H.; Lee, J. H.; Kim, N. H. Crystal transformation engineering for effective polysulfides blocking layer for excellent energy density lithium–sulfur batteries. Energy Storage Mater. 2023, 61, 102877. https://doi.org/10.1016/j.ensm.2023.102877

Deng, R.; Yu, H.; Liu, J.; Chu, F.; Lei, J.; Yang, L.; Wu, F. Adsorption-catalytic effects of metallurgical ferrous slag on polysulfides in Li–S batteries. J. Mater. Chem. A 2023, 11 (29), 15769-15777. https://doi.org/10.1039/D3TA02327C

Feng, P.; Hou, W.; Bai, Z.; Bai, Y.; Sun, K.; Wang, Z. Ultrathin two-dimensional bimetal NiCo-based MOF nanosheets as ultralight interlayer in lithium-sulfur batteries. Chinese Chemical Letters 2023, 34 (4), 107427. https://doi.org/10.1016/j.cclet.2022.04.025

Feng, S.; Wang, J.; Wen, J.; Li, X.; Wang, Z.; Zeng, Y.; Xiao, J. Improvement of redox kinetics of dendrite-free lithium–sulfur battery by bidirectional catalysis of cationic dual-active sites. ACS Sustainable Chemistry & Engineering 2023, 11 (23), 8544-8555. https://doi.org/10.1021/acssuschemeng.3c01158

Hao, Q.; Qian, X.; Jin, L.; Cheng, J.; Zhao, S.; Chen, J.; Zhang, K.; Li, B.; Pang, S.; Shen, X. Application of ZIF-67/ZIF-8 derived Co3O4/ZnO heterojunction in lithium-sulfur battery separators. J. Alloy. Compd. 2023, 967, 171605. https://doi.org/10.1016/j.jallcom.2023.171605

Li, T.; Liang, L.; Chen, Z.; Zhu, J.; Shen, P. Hollow Ti3C2Tx MXene@ CoSe2/N-doped carbon heterostructured composites for multiphase electrocatalysis process in lithium-sulfur batteries. Chem. Eng. J. 2023, 474, 145970. https://doi.org/10.1016/j.cej.2023.145970

Qin, B.; Zhao, X.; Wang, Q.; Yao, W.; Cai, Y.; Chen, Y.; Wang, P.; Zou, Y.; Cao, J.; Zheng, X. A tandem electrocatalyst with dense heterointerfaces enabling the stepwise conversion of polysulfide in lithium-sulfur batteries. Energy Storage Mater. 2023, 55, 445-454. https://doi.org/10.1016/j.ensm.2022.12.014

Song, P.; Zheng, S.; Ullah, Z.; Yang, Z.; Zhu, P.; He, A.; Wang, C.; Li, Q. Synergistic effects of FeCo bimetallic single-atom catalysts: accelerating the redox conversion of polysulfides and inhibiting the growth of lithium dendrites in lithium–sulfur batteries. ACS Applied Energy Materials 2023, 6 (9), 4671-4682. https://doi.org/10.1021/acsaem.2c04118

Xiao, W.; Kiran, G. K.; Yoo, K.; Kim, J. H.; Xu, H. The dual‐site adsorption and high redox activity enabled by hybrid organic‐inorganic vanadyl ethylene glycolate for high‐rate and long‐durability lithium–sulfur batteries. Small 2023, 19 (20), 2206750. https://doi.org/10.1002/smll.202206750

Zhou, Q. Y.; Tan, L.; Lv, T. B.; Li, M. C.; Zhang, J. J.; Zhao, Z. Q.; Jin, X. J.; Liu, Z.; Hou, P. P.; Zeng, Z. Nickel foam coated by Ni nanoparticle-decorated 3D nanocarbons as a freestanding host for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2023, 15 (2), 3037-3046. https://doi.org/10.1021/acsami.2c19987

Das, S.; Bhuyan, M.; Gupta, K. N.; Okpowe, O.; Choi, A.; Sweeny, J.; Olawale, D.; Pol, V. G. Optimization of the form factors of advanced Li‐S pouch cells. Small 2024, 20 (31), 2311850.https://doi.org/10.1002/smll.202311850

Zhang, W.; He, X.; He, C. The “dp orbital hybridization”-guided design of novel two-dimensional MOFs with high anchoring and catalytic capacities in Lithium−Sulfur batteries. Journal of Colloid and Interface Science 2025, 678, 540-548. https://doi.org/10.1016/j.jcis.2024.08.184

Wang, S. Y.; Wang, Z. W.; Chen, F. Z.; Peng, B.; Xu, J.; Li, J. Z.; Lv, Y. H.; Kang, Q.; Xia, A. L.; Ma, L. B. Electrocatalysts in lithium-sulfur batteries. Nano Res. 2023, 16 (4), 4438-4467. https://doi.org/10.1007/s12274-022-5215-4

Wang, T.; He, J.; Zhu, Z.; Cheng, X. B.; Zhu, J.; Lu, B.; Wu, Y. Heterostructures regulating lithium polysulfides for advanced lithium‐sulfur batteries. Adv. Mater. 2023, 35 (47), 2303520. https://doi.org/10.1002/adma.202303520

Zhang, Y.; Wang, M.; Chen, B.; Zeng, W.; Liu, Y.; Yang, H.; Huang, J.; Zhou, M. Win-win cooperation of boron-doped C3N5 porous nanosheets and CoSe2 nanorods for promoting cathodic sulfur conversion in lithium–sulfur batteries. Chem. Eng. J. 2025, 510, 161776. https://doi.org/10.1016/j.cej.2025.161776

Han, F.; Yan, D.; Guan, X.; Lu, Q.; Yin, S.; Yan, Y.; Zhou, H.; Yang, P.; Zhang, Q.; Zhang, S. Self-assembled 3D CoSe-based sulfur host enables high-efficient and durable electrocatalytic conversion of polysulfides for flexible lithium-sulfur batteries. Energy Storage Mater. 2024, 71, 103652. https://doi.org/10.1016/j.ensm.2024.103652

Chu, R.; Nguyen, T. T.; Song, H.; Bai, Y.; Tran, D. T.; Kim, N. H.; Lee, J. H. Enriched vacancies of ruthenium doped niobium oxide on hollow graphene sphere as sulfur reduction reaction promoter in lithium sulfur batteries. Applied Catalysis B: Environment and Energy 2024, 352, 124030. https://doi.org/10.1016/j.apcatb.2024.124030

Song, H.; Nguyen, T. T.; Chu, R.; Bai, Y.; Kim, N. H.; Lee, J. H. Coupling interfacial effect in heterogeneous RuP2-RuP for accelerating sulfur reduction reaction of lithium sulfur batteries. Nano Energy 2024, 109859. https://doi.org/10.1016/j.nanoen.2024.109859

Wang, H. Y.; Dai, Y. K.; Liao, K. M.; Deng, S.; Dai, G. P. Vertical graphene growth on LDH nanosheets and carbon cloth nanofibers with NiCo nanoparticles as a freestanding host for high-performance lithium–sulfur batteries. The Journal of Physical Chemistry Letters 2025, 16 (4), 1103-1113. https://doi.org/10.1021/acs.jpclett.4c03506

Downloads

Published

2025-12-29

How to Cite

Lu, J. ., Zhu, M. ., Wang, L. ., Cui, Y. ., Wu, C. ., Bi, Q. ., Jiang, S. ., Zhao, Q. ., Zhao, J. ., Liu, L. ., Wang, C. ., & He, A. . (2025). Nickel Loaded into Three-Dimensional Porous Composite Materials Doped by Nitrogen Atoms for Accelerating the Conversion Process of Polysulfides. Journal of Composites and Biodegradable Polymers, 13, 151–161. https://doi.org/10.12974/2311-8717.2025.13.13

Issue

Section

Articles