Influence of Environment Aging on the Thermal Insulation of Sustainable Ecofriendly Composites
DOI:
https://doi.org/10.12974/2311-8717.2025.13.11Keywords:
Thermal insulation, Aging, Biodegradable composites, Sansevieria fiberAbstract
In recent years, researchers are increasingly emphasized the development of sustainable biodegradable composites to minimize environmental impact and broaden their potential in engineering fields. This study investigates the influence of environmental aging including, exposer to tap water, sea water and aqueous (NaOH) solutions, on the thermal insulation behavior of sansevieria /PLA-based biodegradable composites. The water uptake characteristics and diffusion coefficients were determined and analyzed to understand their effects on material performance. Results revealed a significant rise in thermal conductivity after moisture absorption, indicating a decline in insulation performance. the percentage increase in thermal conductivity of S4 in tap water, sea water and aqueous solution compared to dry state are 112.69, 156.03 and 189.36, respectively. The mechanisms responsible for the deterioration of thermal insulation due to water penetration are examined, providing insights in to the durability and environmental stability of these insulation materials.
References
Sanjay, M.R., Siengchin, S., Parameswaranpillai, J., Jawaid, M., Pruncu, C.I., Khan, A.: A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydr. Polym. 207, 108-121 (2019). https://doi.org/10.1016/j.carbpol.2018.11.083
Rajeshkumar, G., Seshadri, S.A., Devnani, G.L., Sanjay, M.R., Siengchin, S., Maran, J.P., Al-Dhabi, N.A., Karuppiah, P., Mariadhas, V.A., Sivarajasekar, N., Anuf, A.R.: Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites - A comprehensive review. J. Clean. Prod. 310, 127483 (2021). https://doi.org/10.1016/j.jclepro.2021.127483
Mishra, S.K., Dahiya, S., Gangil, B., Ranakoti, L., Singh, T., Sharma, S., Boonyasopon, P., Rangappa, S.M., Siengchin, S.: Mechanical, morphological, and tribological characterization of novel walnut shell-reinforced polylactic acid-based biocomposites and prediction based on artificial neural network. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03670-z
Binoj, J.S., Manikandan, N., Mansingh, B.B., et al.: Taguchi’s Optimization of Areca Fruit Husk Fiber Mechanical Properties for Polymer Composite Applications. Fibers Polym. 23, 3207-3213 (2022). https://doi.org/10.1007/s12221-022-0365-2
Phiri, R., Rangappa, S.M., Siengchin, S.: Sugarcane bagasse reinforced polymer based environmentally sustainable composites: influence of fiber content and matrix selection. J. Polym. Res. 32, 69 (2025). https://doi.org/10.1007/s10965-025-04291-6
Techawinyutham, L., Srisuk, R., Techawinyutham, W., et al.: Discarded bamboo chopstick cellulose-based fibers for bio-based polybutylene succinate composite reinforcement. Macromol. Res. 33, 207-224 (2025). https://doi.org/10.1007/s13233-024-00324-z
Faruk, O., Bledzki, A.K., Fink, H.P., Sain, M.: Biocomposites reinforced with natural fibers: 2000-2010. Prog. Polym. Sci. 37(11), 1552-1596 (2012). https://doi.org/10.1016/j.progpolymsci.2012.04.003
Gupta, M.K., Srivastava, R.K.: Mechanical properties of hybrid fibers-reinforced polymer composite: a review. Polym. Plast. Technol. Eng. 55(6), 626-642 (2016). https://doi.org/10.1080/03602559.2015.1098694
Bi, H., Ren, Z., Guo, R., et al.: Fabrication of flexible wood flour/thermoplastic polyurethane elastomer composites using fused deposition modeling. Ind. Crops Prod. 122, 76-84 (2018). https://doi.org/10.1016/j.indcrop.2018.05.059
Ahmad, N.D., Kusmono, M.W.W., Herianto: Preparation and properties of cellulose nanocrystals-reinforced poly(lactic acid) composite filaments for 3D printing applications. Results Eng. 17, 100842 (2023). https://doi.org/10.1016/j.rineng.2022.100842
Prasad, A.V.R., Rao, K.M.M.: Tensile and impact behaviour of rice straw-polyester composites. Indian J. Fibre Text. Res. 32, 399-403 (2007)
Prasad, A.V.R., Rao, K.M.M., Kumar, M.A.: Flexural properties of rice straw reinforced polyester composites. Indian J. Fibre Text. Res. 31, 335-338 (2006)
Prasad, A.V.R., Rao, K.M., Nagasrinivasulu, G.: Mechanical properties of banana empty fruit bunch fibre reinforced polyester composites. Indian J. Fibre Text. Res. 34, 162-167 (2009)
Shen, M., Song, B., Zeng, G., Zhang, Y., Huang, W., Wen, X., Tang, W.: Are biodegradable plastics a promising solution to solve the global plastic pollu-tion? Environ. Pollut. 263, 114469 (2020). https://doi.org/10.1016/j.envpol.2020.114469
Imoisili, P.K., Jen, T.-C.: Behaviour of water absorption, potassium perman-ganate treated plantain fibre/epoxy bio-composites. J. Mater. Res. Technol. 9(4), 8705-8713 (2020). https://doi.org/10.1016/j.jmrt.2020.05.121
Shivarajj, C.K., Siddeswarappa, B., Abishek, T.H.M.: A study on compressive strength and water absorption behaviour of coconut coir and shell powder reinforced natural composites. Int. J. Res. Adv. Technol. 4, Article ID 2321-9637 (2016).
Pramod, V.B., Manjunatha, T.S., Gurushanth, B.V.: Water absorption behav-iour of banana and sisal hybrid fibre polymer composites. Int. J. Eng. Technol. 7(3.34), (2018).
Sanjay, M.R., Yogesha, B.: Water absorption behaviour of jute and kenaf fabric reinforced epoxy composites. Int. J. Compos. Mater. 6(2), Article ID 2166-4919 (2016).
Reddy, R.S., Kumshikar, R.R., Ravikumar, T.: Water absorption and swelling behaviour of woven bamboo and jute fibre hybrid composites. Int. J. Adv. Sci. Technol. 29(4), 11414-11423 (2020).
Dhakal, H.N., Zhang, Z.Y., Richardson, M.O.W.: Hemp fibre reinforced un-saturated polyester composites. Compos. Sci. Technol. 67, 1674-1683 (2007). https://doi.org/10.1016/j.compscitech.2006.06.019
Akil, H.M.D., Cheng, L.W., Ishak, Z.A.M., Bakar, A.A., Raahman, M.A.A.: Study on pultruded jute/unsaturated polyester composites. Compos. Sci. Tech-nol. 69, 1942-1948 (2009). https://doi.org/10.1016/j.compscitech.2009.04.014
K. Ramanaiah, A.V. Ratna Prasad, K. Hema Chandra Reddy, Mechanical, thermophysical and fire properties of sansevieria fiber-reinforced polyester composites, Materials & Design, 49, 2013, 986-991. https://doi.org/10.1016/j.matdes.2013.02.056
Caldwell, D.R.: Thermal conductivity of sea water. Deep Sea Res. Oceanogr. Abstr. 21(1), 131-137 (1974). https://doi.org/10.1016/0011-7471(74)90070-9
Tasgin, Y., Demircan, G., Kandemir, S., et al.: Mechanical, wear and thermal properties of natural fiber-reinforced epoxy composite: cotton, sisal, coir and wool fibers. J. Mater. Sci. 59, 10844-10857 (2024). https://doi.org/10.1007/s10853-024-09810-2
Boukhattem, L., Boumhaout, M., Hamdi, H., Benhamou, B., Ait Nouh, F.: Moisture content influence on the thermal conductivity of insulating building materials made from date palm fibers mesh. Constr. Build. Mater. 148, 811-823 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.020
Jelle, B.P.: Traditional, state-of-the-art and future thermal building insulation materials and solutions - Properties, requirements and possibilities. Energy Build. 43(10), 2549-2563 (2011). https://doi.org/10.1016/j.enbuild.2011.05.015
Lian, X., Tian, L., Li, Z., Zhao, X.: Thermal conductivity analysis of natural fiber-derived porous thermal insulation materials. Int. J. Heat Mass Transf. 220, 124941 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2023.124941