Progress in Structural Design and Multifunction of Bio-based Epoxy Resin Composites Containing Dynamic Bonds

Authors

  • Yating Wang State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Liaoning Technology Innovation Center of High Performance Resin Materials, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian 116024, P.R. China
  • Xigao Jian State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Liaoning Technology Innovation Center of High Performance Resin Materials, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian 116024, P.R. China
  • Zhihuan Weng State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Liaoning Technology Innovation Center of High Performance Resin Materials, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian 116024, P.R. China

DOI:

https://doi.org/10.12974/2311-8717.2025.13.07

Keywords:

Bio-based epoxy, Dynamic covalent chemistry, Dynamic bond, Composite, Recyclability, Self-healing capability, Multifunction

Abstract

Epoxy thermosets are widely used in coatings, adhesives, and composites because of their excellent mechanical strength, chemical resistance, and dimensional stability. However, their petroleum-based origin and permanent crosslinking raise concerns regarding environmental impact and human health. Bio-based epoxy systems and dynamic covalent chemistry (DCC) have therefore emerged as promising strategies to achieve sustainability and recyclability. Although many studies have explored dynamic epoxy networks, most reviews emphasize resin-level properties rather than their behavior in composite systems. This review aims to provide a focused and comprehensive overview of bio-based epoxy composites containing dynamic bonds, clarifying how dynamic exchange mechanisms influence molecular design and multifunctional performance. Key findings highlight the synergistic roles of different dynamic chemistries in enabling reprocessability, self-healing, recyclability, and enhanced structural robustness. By identifying structure–property relationships across various composite strategies, this review fills a critical gap in the literature and offers guidance for the rational design of next-generation biodegradable epoxy composites.

References

May C. Epoxy Resins: Chemistry and Technology, Second Edition. Routledge; 2018.

Mousavifard SM, Nouri PM, Attar MM, Ramezanzadeh B. The effects of zinc aluminum phosphate (ZPA) and zinc aluminum polyphosphate (ZAPP) mixtures on corrosion inhibition performance of epoxy/polyamide coating. J Ind Eng Chem 2013; 19: 1031-9. https://doi.org/10.1016/j.jiec.2012.11.027.

Li Y, Badrinarayanan P, Kessler MR. Liquid crystalline epoxy resin based on biphenyl mesogen: Thermal characterization. Polymer 2013; 54: 3017-25. https://doi.org/10.1016/j.polymer.2013.03.043.

Na T, Shao K, Zhu J, Sun H, Xu D, Zhang Z, et al. Composite membranes based on fully sulfonated poly(aryl ether ketone)/epoxy resin/different curing agents for direct methanol fuel cells. J Power Sources 2013; 230: 290-7. https://doi.org/10.1016/j.jpowsour.2012.12.082.

Pham VH, Ha YW, Kim SH, Jeong HT, Jung MY, Ko BS, et al. Synthesis of epoxy encapsulated organoclay nanocomposite latex via phase inversion emulsification and its gas barrier property. J Ind Eng Chem 2014; 20: 108-12. https://doi.org/10.1016/j.jiec.2013.04.019.

Park S-J, Kim M-H, Lee J-R, Choi S. Effect of Fiber-Polymer Interactions on Fracture Toughness Behavior of Carbon Fiber-Reinforced Epoxy Matrix Composites. J Colloid Interface Sci 2000; 228: 287-91. https://doi.org/10.1006/jcis.2000.6953.

Jin F-L, Li X, Park S-J. Synthesis and application of epoxy resins: A review. J Ind Eng Chem 2015; 29: 1-11. https://doi.org/10.1016/j.jiec.2015.03.026.

Epoxy Resin Market Size And Share | Industry Report, 2030 n.d. https://www.grandviewresearch.com/industry-analysis/epoxy-resins-market (accessed October 17, 2025).

Kumar S, Samal SK, Mohanty S, Nayak SK. Recent Development of Biobased Epoxy Resins: A Review. Polym-Plast Technol Eng 2018; 57: 133-55. https://doi.org/10.1080/03602559.2016.1253742.

Lorwanishpaisarn N, Kasemsiri P, Srikhao N, Son C, Kim S, Theerakulpisut S, et al. Carbon fiber/epoxy vitrimer composite patch cured with bio-based curing agents for one-step repair metallic sheet and its recyclability. J Appl Polym Sci 2021; 138: 51406. https://doi.org/10.1002/app.51406.

Goliszek M, Podkościelna B, Rybiński P, Klapiszewska I, Klepka T, Masek A, et al. Toward a green economy: Lignin-based hybrid materials as functional additives in flame-retardant polymer coatings. J Polym Res 2024; 31: 316. https://doi.org/10.1007/s10965-024-04169-z.

Liu J, He Z, Wu G, Zhang X, Zhao C, Lei C. Synthesis of a novel nonflammable eugenol-based phosphazene epoxy resin with unique burned intumescent char. Chem Eng J 2020; 390: 124620. https://doi.org/10.1016/j.cej.2020.124620.

Zhang R, Zhong J, Wu G, Xu K, Xu X, Cui X, et al. High-performance and recyclable epoxy resins based on fully bio-based hardeners containing Schiff base structures. R Soc Open Sci 2025; 12: 250109. https://doi.org/10.1098/rsos.250109.

Huang J, Guo W, Wang X, Song L, Hu Y. Intrinsically flame retardant cardanol-based epoxy monomer for high-performance thermosets. Polym Degrad Stab 2021; 186: 109519. https://doi.org/10.1016/j.polymdegradstab.2021.109519.

Gavrilović-Grmuša I, Rančić M, Tešić T, Stupar S, Milošević M, Gržetić J. Bio-Epoxy Resins Based on Lignin and Tannic Acids as Wood Adhesives—Characterization and Bonding Properties. Polymers 2024; 16: 2602. https://doi.org/10.3390/polym16182602.

Sangermano M, Bergoglio M, Schögl S. Biobased Vitrimeric Epoxy Networks. Macromol Mater Eng 2024; 309:2300371. https://doi.org/10.1002/mame.202300371.

Zhang C, Wang X, Liang D, Deng H, Lin Z, Feng P, et al. Rapid self-healing, multiple recyclability and mechanically robust plant oil-based epoxy resins enabled by incorporating tri-dynamic covalent bonding. J Mater Chem A 2021; 9: 18431-9. https://doi.org/10.1039/D1TA04593H.

Qian Z, Xiao Y, Zhang X, Li Q, Wang L, Fu F, et al. Bio-based epoxy resins derived from diphenolic acid via amidation showing enhanced performance and unexpected autocatalytic effect on curing. Chem Eng J 2022; 435: 135022. https://doi.org/10.1016/j.cej.2022.135022.

Sankar Lal S, Kannan S. Influence of castor oil-derived bio-resin on mechanical and visco-elastic properties of dynamic covalent imine bond based epoxy and its composite. Polym Compos 2025; 46: 2255-76. https://doi.org/10.1002/pc.29102.

Nemoto A, Sugane K, Terai Y, Shibata M. Thermal, mechanical, and healing properties of bio-based epoxy networks cured with a dynamic imine bond-containing trisphenol derived from glycerol, cysteamine, and vanillin. J Macromol Sci Part A 2025; 62: 913-22. https://doi.org/10.1080/10601325.2025.2562363.

Shao X, Zhao P, Tian Z, Zhang N, Wang H, Li X, et al. A novel bio-based anhydride curing agent for the synthesis of high-performance epoxy resin. Polym Degrad Stab 2024; 229: 110979. https://doi.org/10.1016/j.polymdegradstab.2024.110979.

Sangaletti D, Ceseracciu L, Marini L, Athanassiou A, Zych A. Biobased boronic ester vitrimer resin from epoxidized linseed oil for recyclable carbon fiber composites. Resour Conserv Recycl 2023; 198: 107205.

https://doi.org/10.1016/j.resconrec.2023.107205.

Yang S, Hu H, Tong Z, Lin H, Zeng H, Hu Y, et al. Vanillin-based imine curing agent for high-strength, recyclable, aging-resistant, and anticorrosive epoxy composite coatings. Compos Sci Technol 2025; 270: 111282. https://doi.org/10.1016/j.compscitech.2025.111282.

Zhang J-Y, Zeng L-H, Feng J. Dynamic covalent gels assembled from small molecules: from discrete gelators to dynamic covalent polymers. Chin Chem Lett 2017; 28: 168-83. https://doi.org/10.1016/j.cclet.2016.07.015.

Fouquey C, Lehn J-M, Levelut A-M. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv Mater 1990; 2: 254-7. https://doi.org/10.1002/adma.19900020506.

Kloxin CJ, Scott TF, Adzima BJ, Bowman CN. Covalent Adaptable Networks (CANs): A Unique Paradigm in Cross-Linked Polymers. Macromolecules 2010; 43: 2643-53. https://doi.org/10.1021/ma902596s.

He M, Li J, Xu J, Wu L, Li N, Zhang S. Dynamic Recyclable High-Performance Epoxy Resins via Triazolinedione-Indole Click Reaction and Cation-π Interaction Synergistic Crosslinking. Polymers 2024; 16: 1900. https://doi.org/10.3390/polym16131900.

Ding X-M, Chen L, Luo X, He F-M, Xiao Y-F, Wang Y-Z. Biomass-derived dynamic covalent epoxy thermoset with robust mechanical properties and facile malleability. Chin Chem Lett 2022; 33: 3245-8. https://doi.org/10.1016/j.cclet.2021.10.079.

Jiang Y, Wang S, Dong W, Kaneko T, Chen M, Shi D. High-Strength, Degradable and Recyclable Epoxy Resin Based on Imine Bonds for Its Carbon-Fiber-Reinforced Composites. Materials 2023; 16: 1604. https://doi.org/10.3390/ma16041604.

Toendepi I, Zhu S, Liu Y, Zhang L, Wei Y, Liu W. Synthesis and structure-property relationship of epoxy vitrimers containing different acetal structures. Polymer 2023; 272: 125862. https://doi.org/10.1016/j.polymer.2023.125862.

Kubota R, Sugane K, Shibata M. Effect of imine-containing phenolic hardeners with different chain lengths and epoxy functionalities on thermal, mechanical, and healing properties of bio-based epoxy vitrimers. Polym Bull 2024; 81: 12967-84. https://doi.org/10.1007/s00289-024-05327-5.

Fanlo P, Konuray O, Ochoteco O, Ximenis M, Rekondo A, Grande HJ, et al. Dynamic by design: unlocking full relaxation in disulfide epoxy networks. Polym Chem 2025; 16: 2701-17. https://doi.org/10.1039/D5PY00124B.

Zhou X, Yu Z, Fang Y, Hu H, Cheng S, Tang Z, et al. High-performance fully bio-based dynamic covalent supramolecular epoxy resin: synthesis and properties. Green Chem 2025; 27: 3248-60. https://doi.org/10.1039/D4GC06425A.

Dong K, Tang S, Zhao D, Pang Y, Zhao C. Vanillin-derived bio-based epoxy resins containing dual dynamic Schiff base and disulfide bonds with reprocessability and degradability. Polym Degrad Stab 2024; 230: 111077. https://doi.org/10.1016/j.polymdegradstab.2024.111077.

Montarnal D, Capelot M, Tournilhac F, Leibler L. Silica-Like Malleable Materials from Permanent Organic Networks. Science 2011; 334: 965-8. https://doi.org/10.1126/science.1212648.

Ran Y, Zheng L-J, Zeng J-B. Dynamic Crosslinking: An Efficient Approach to Fabricate Epoxy Vitrimer. Materials 2021; 14: 919. https://doi.org/10.3390/ma14040919.

Kamarulzaman S, Png ZM, Lim EQ, Lim IZS, Li Z, Goh SS. Covalent adaptable networks from renewable resources: Crosslinked polymers for a sustainable future. Chem 2023; 9: 2771-816. https://doi.org/10.1016/j.chempr.2023.04.024.

Elling BR, Dichtel WR. Reprocessable Cross-Linked Polymer Networks: Are Associative Exchange Mechanisms Desirable? ACS Cent Sci 2020; 6: 1488-96. https://doi.org/10.1021/acscentsci.0c00567.

Liu T, Hao C, Wang L, Li Y, Liu W, Xin J, et al. Eugenol-Derived Biobased Epoxy: Shape Memory, Repairing, and Recyclability. Macromolecules 2017; 50: 8588-97. https://doi.org/10.1021/acs.macromol.7b01889.

Xia J, Li S, Gao R, Zhang Y, Wang L, Ye Y, et al. Bio-Based Epoxy Vitrimers with Excellent Properties of Self-Healing, Recyclability, and Welding. Polymers 2024; 16: 2113. https://doi.org/10.3390/polym16152113.

Lin H, Dong K, Luan J, Li C, Zhao D, Zhao C, et al. Repairable, Degradable and Recyclable Carbon Fiber-Reinforced Bio-Based Epoxy Vitrimer Composites Enabled by Facile Transesterification. Polymers 2025; 17: 2387. https://doi.org/10.3390/polym17172387.

Emon JH, Rashid MA, Islam MA, Hasan MN, Patoary MK. Review on the Synthesis, Recyclability, Degradability, Self-Healability and Potential Applications of Reversible Imine Bond Containing Biobased Epoxy Thermosets. Reactions 2023; 4: 737-65. https://doi.org/10.3390/reactions4040043.

Kaya İ, Gül M, Şenol D. Synthesis and characterization of epoxy resins containing imine group and their curing processes with aromatic diamine. J Macromol Sci Part A 2019; 56: 618-27. https://doi.org/10.1080/10601325.2019.1596747.

Mai V-D, Shin S-R, Lee D-S, Kang I. Thermal Healing, Reshaping and Ecofriendly Recycling of Epoxy Resin Crosslinked with Schiff Base of Vanillin and Hexane-1,6-Diamine. Polymers 2019; 11: 293. https://doi.org/10.3390/polym11020293.

Chen L, Ning N, Zhou G, Li Y, Feng S, Guo Z, et al. Bio-Based and Solvent-Free Epoxy Vitrimers Based on Dynamic Imine Bonds with High Mechanical Performance. Polymers 2025; 17: 571. https://doi.org/10.3390/polym17050571.

Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew Chem Int Ed Engl 2011; 50: 1660-3. https://doi.org/10.1002/anie.201003888.

Canadell J, Goossens H, Klumperman B. Self-Healing Materials Based on Disulfide Links. Macromolecules 2011; 44: 2536-41. https://doi.org/10.1021/ma2001492.

Kim S-M, Jeon H, Shin S-H, Park S-A, Jegal J, Hwang SY, et al. Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers. Adv Mater 2018; 30: 1705145. https://doi.org/10.1002/adma.201705145.

Ji S, Cao W, Yu Y, Xu H. Visible-Light-Induced Self-Healing Diselenide-Containing Polyurethane Elastomer. Adv Mater 2015; 27: 7740-5. https://doi.org/10.1002/adma.201503661.

Wei X, Liu F, Guo X, Gao F, Li Y, Zhu D, et al. Exploring of the property of epoxy resins based on diselenide and disulfide dynamic linkers. Front Chem 2022; 10. https://doi.org/10.3389/fchem.2022.991010.

Guggari S, Magliozzi F, Malburet S, Graillot A, Destarac M, Guerre M. Vanillin-Based Epoxy Vitrimers: Looking at the Cystamine Hardener from a Different Perspective. ACS Sustain Chem Eng 2023; 11: 021-31. https://doi.org/10.1021/acssuschemeng.3c00379.

Guggari S, Magliozzi F, Malburet S, Graillot A, Destarac M, Guerre M. Vanillin-based dual dynamic epoxy building block: a promising accelerator for disulfide vitrimers. Polym Chem 2024; 15: 1347-57. https://doi.org/10.1039/D4PY00038B.

Yoshimura T, Sugane K, Shibata M. Bio-based imine- and disulfide-containing epoxy vitrimers with practical self-healing properties at room temperature. Polym Renew Resour 2025; 16: 192-208. https://doi.org/10.1177/20412479251344853.

LORAND JP, EDWARDS JO. Polyol Complexes and Structure of the Benzeneboronate Ion. J Org Chem 1959; 24: 769-74. https://doi.org/10.1021/jo01088a011.

Gosecki M, Gosecka M. Boronic Acid Esters and Anhydrates as Dynamic Cross-Links in Vitrimers. Polymers 2022; 14: 842. https://doi.org/10.3390/polym14040842.

Cash JJ, Kubo T, Dobbins DJ, Sumerlin BS. Maximizing the symbiosis of static and dynamic bonds in self-healing boronic ester networks. Polym Chem 2018; 9: 2011-20. https://doi.org/10.1039/C8PY00123E.

Kang B, Kalow JA. Internal and External Catalysis in Boronic Ester Networks. ACS Macro Lett 2022; 11: 394-401. https://doi.org/10.1021/acsmacrolett.2c00056.

Ke Y, Yang X, Chen Q, Xue J, Song Z, Zhang Y, et al. Recyclable and Fluorescent Epoxy Polymer Networks from Cardanol Via Solvent-Free Epoxy-Thiol Chemistry. ACS Appl Polym Mater 2021; 3: 3082-92. https://doi.org/10.1021/acsapm.1c00284.

Hashimoto T, Meiji H, Urushisaki M, Sakaguchi T, Kawabe K, Tsuchida C, et al. Degradable and chemically recyclable epoxy resins containing acetal linkages: Synthesis, properties, and application for carbon fiber-reinforced plastics. J Polym Sci Part Polym Chem 2012; 50: 3674-81. https://doi.org/10.1002/pola.26160.

Yamaguchi A, Hashimoto T, Kakichi Y, Urushisaki M, Sakaguchi T, Kawabe K, et al. Recyclable carbon fiber-reinforced plastics (CFRP) containing degradable acetal linkages: Synthesis, properties, and chemical recycling. J Polym Sci Part Polym Chem 2015; 53: 1052-9. https://doi.org/10.1002/pola.27575.

Ge M, Miao J-T, Zhang K, Wu Y, Zheng L, Wu L. Building biobased, degradable, flexible polymer networks from vanillin via thiol-ene “click” photopolymerization. Polym Chem 2021; 12: 564-71. https://doi.org/10.1039/D0PY01407A.

Ma S, Wei J, Jia Z, Yu T, Yuan W, Li Q, et al. Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. J Mater Chem A 2019; 7: 1233-43. https://doi.org/10.1039/C8TA07140C.

Toendepi I, Zhu S, Liu Y, Zhang L, Wei Y, Liu W. The effect of different cyclic substituents on the properties of recyclable acetal-containing epoxy resins. Polymer 2024; 290: 126561. https://doi.org/10.1016/j.polymer.2023.126561.

Fekiač JJ, Krbata M, Kohutiar M, Janík R, Kakošová L, Breznická A, et al. Comprehensive Review: Optimization of Epoxy Composites, Mechanical Properties, & Technological Trends. Polymers 2025; 17: 271. https://doi.org/10.3390/polym17030271.

Tran HTT, Nisha SS, Radjef R, Nikzad M, Bjekovic R, Fox B. Recyclable and Biobased Vitrimers for Carbon Fibre-Reinforced Composites—A Review. Polymers 2024; 16: 1025. https://doi.org/10.3390/polym16081025.

Jadhav T, Dhokale B, Saeed ZM, Hadjichristidis N, Mohamed S. Dynamic Covalent Chemistry of Enamine-Ones: Exploring Tunable Reactivity in Vitrimeric Polymers and Covalent Organic Frameworks. ChemSusChem 2024; 17: e202400356. https://doi.org/10.1002/cssc.202400356.

Lee MK, Kim MO, Lee T, Cho S, Kim D, Chang W, et al. Epoxy-Based Vitrimers for Sustainable Infrastructure: Emphasizing Recycling and Self-Healing Properties. Polymers 2025; 17: 373. https://doi.org/10.3390/polym17030373.

Mashouf Roudsari G, Mohanty AK, Misra M. Green Approaches To Engineer Tough Biobased Epoxies: A Review. ACS Sustain Chem Eng 2017; 5: 9528-41. https://doi.org/10.1021/acssuschemeng.7b01422.

Fang X, Guo X, Tang W, Gu Q, Wu Y, Sun H, et al. Efficient Toughening of DGEBA with a Bio-Based Protocatechuic Acid Derivative. ACS Omega 2023; 8: 9962-8. https://doi.org/10.1021/acsomega.2c07140.

Sahoo S, Khandelwal V, Manik G. Development of toughened bio-based epoxy with epoxidized linseed oil as reactive diluent and cured with bio-renewable crosslinker. Polym Adv Technol 2017; 29. https://doi.org/10.1002/pat.4166.

Zamani MR, Zohuriaan-Mehr MJ, Kabiri K. Dual dynamic epoxy vitrimer feasibly made from a bio-based hardener and PEG: Synthesis, physico-chemical properties, supramolecular effects, green chemistry metrics, and DFT study. React Funct Polym 2025; 215: 106387. https://doi.org/10.1016/j.reactfunctpolym.2025.106387.

Raman A, Jayan JS, Saritha A. Self-healing and stimuli-responsive shape memory in PCL/Epoxy/Tannic acid systems: Synergism of Bioepoxy and biocuring agents. Polymer 2025; 321: 128131. https://doi.org/10.1016/j.polymer.2025.128131.

Shadmand M, Alizadeh F, Razavi Aghjeh MK. Chitosan-Enhanced Vitrimerization of Thermoset Epoxy Resins: Multiple-Dynamic Networks for Sustainable Approaches, Improved Mechanical Properties, and Rapid Stress Relaxation. ACS Appl Polym Mater 2025; 7: 1103-17. https://doi.org/10.1021/acsapm.4c03738.

Schenk V, Labastie K, Destarac M, Olivier P, Guerre M. Vitrimer composites: current status and future challenges 2022. https://doi.org/10.1039/D2MA00654E.

Caglayan C, Kim G, Yun GJ. CNT-Reinforced Self-Healable Epoxy Dynamic Networks Based on Disulfide Bond Exchange. ACS Omega 2022; 7: 43480-91. https://doi.org/10.1021/acsomega.2c03910.

Ghosh S, Chatterjee A, Dey N, Mishra S, Bhardwaj S, Singh S, et al. Impact of nanofillers on vitrimerization and recycling strategies: a review 2025. https://doi.org/10.1039/D5NA00183H.

Sun J, Xu Y, Zou Y, Lin B, Feng Y, Cao C, et al. Biobased and Recyclable Epoxy Composite with High Thermal Conductivity Based on Disulfide Exchange. ACS Appl Polym Mater 2024; 6: 5576-84. https://doi.org/10.1021/acsapm.4c00967.

Luo F, Yang S, Shi Z, Zou Y, Li H. Towards fire-safe, smoke-suppression and recyclable epoxy composite from bio-derived flame retardant. Polym Degrad Stab 2024; 227: 110894. https://doi.org/10.1016/j.polymdegradstab.2024.110894.

Song F, Li Z, Jia P, Zhang M, Bo C, Feng G, et al. Tunable “soft and stiff”, self-healing, recyclable, thermadapt shape memory biomass polymers based on multiple hydrogen bonds and dynamic imine bonds. J Mater Chem A 2019; 7: 13400-10. https://doi.org/10.1039/C9TA03872H.

Hu Y, Tong S, Hu L, Zhang M, Huang Q, Sha Y, et al. Molecularly engineered cardanol derived epoxy vitrimers based on dynamic disulfide and dynamic ester exchanges with desirable dynamic response, degradability, and recyclability. Chem Eng J 2023; 477: 147284. https://doi.org/10.1016/j.cej.2023.147284.

Wu H, Li J, Zhang W, Chen T, Liu F, Han E-H. Supramolecular engineering of nacre-inspired bio-based nanocomposite coatings with exceptional ductility and high-efficient self-repair ability. Chem Eng J 2022; 437: 135405. https://doi.org/10.1016/j.cej.2022.135405.

Wang S, Ma S, Li Q, Xu X, Wang B, Yuan W, et al. Facile in situ preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite. Green Chem 2019; 21: 1484-97. https://doi.org/10.1039/C8GC03477J.

Dong K, Zhao D, Pang Y, Zhao C. Vanillin-derived multifunctional reinforcing agent enabling recyclable epoxy vitrimer composites via hydrogen/dynamic covalent collaborative networks. Polym Degrad Stab 2025; 241: 111608. https://doi.org/10.1016/j.polymdegradstab.2025.111608.

Xu Y, Dai S, Bi L, Jiang J, Zhang H, Chen Y. Catalyst-free self-healing bio-based vitrimer for a recyclable, reprocessable, and self-adhered carbon fiber reinforced composite. Chem Eng J 2022; 429: 132518. https://doi.org/10.1016/j.cej.2021.132518.

Yang W, Ding H, Zhou W, Liu T, Xu P, Puglia D, et al. Design of inherent fire retarding and degradable bio-based epoxy vitrimer with excellent self-healing and mechanical reprocessability. Compos Sci Technol 2022; 230: 109776. https://doi.org/10.1016/j.compscitech.2022.109776.

Mora P, Rimdusit S, Jubsilp C. Near-infrared light-induced sustainable self-healing polymer composites from glass fabric reinforced benzoxazine/epoxy copolymers. J Mater Res Technol 2024; 33: 7808-17. https://doi.org/10.1016/j.jmrt.2024.11.136.

Billington EK, Shaver MP. Recyclable Epoxy Composites Built with a Biobased Hardener. ACS Sustain Chem Eng 2025; 13: 16638-45. https://doi.org/10.1021/acssuschemeng.5c07184.

Fei M, Liu W, Shao L, Cao Y, Bliss BJ, Zhao B, et al. Hemp fiber reinforced dual dynamic network vitrimer biocomposites with direct incorporation of amino silane. Chem Eng J 2024; 480: 148091. https://doi.org/10.1016/j.cej.2023.148091.

Xu S, Zhou L, Fei J, Ma M, He H, Shi Y, et al. Dynamic Schiff Base Bonds Enable Recyclable, High-Toughness Vanillin Epoxy Resins via Micro-Nano-Phase Engineering. ACS Appl Polym Mater 2025; 7: 10482-94. https://doi.org/10.1021/acsapm.5c01300.

Liu H, Yu Y, Liu Y, Zhang M, Li L, Ma L, et al. A Review on Basalt Fiber Composites and Their Applications in Clean Energy Sector and Power Grids. Polymers 2022; 14: 2376. https://doi.org/10.3390/polym14122376.

Ursache Ștefania, Cerbu C, Hadăr A. Characteristics of Carbon and Kevlar Fibres, Their Composites and Structural Applications in Civil Engineering—A Review. Polymers 2024; 16: 127. https://doi.org/10.3390/polym16010127.

Kinloch AJ, Taylor AC, Techapaitoon M, Teo WS, Sprenger S. Tough, natural-fibre composites based upon epoxy matrices. J Mater Sci 2015; 50: 6947-60. https://doi.org/10.1007/s10853-015-9246-z

Giménez R, Serrano B, San-Miguel V, Cabanelas JC. Recent Advances in MXene/Epoxy Composites: Trends and Prospects. Polymers 2022; 14: 1170. https://doi.org/10.3390/polym14061170

Downloads

Published

2025-11-17

How to Cite

Wang, Y. ., Jian, X. ., & Weng, Z. . (2025). Progress in Structural Design and Multifunction of Bio-based Epoxy Resin Composites Containing Dynamic Bonds. Journal of Composites and Biodegradable Polymers, 13, 90–108. https://doi.org/10.12974/2311-8717.2025.13.07

Issue

Section

Articles