Recent Advances in Carbon Nanotube-Modified Polylactide
DOI:
https://doi.org/10.12974/2311-8717.2024.12.03Keywords:
Polylactide, Carbon nanotubes, Structure manipulation, Property optimization, Synergistic effectsAbstract
Polylactide (PLA) has been regarded as one of the most promising bio-based, environmentally-friendly polymers. The products derived from PLA will degrade into CO2 and H2 O ultimately after being wastes. To this extent, PLA is the really sustainable synthetic polymers, due to its nature-to-nature loop within life cycle. However, inherent brittleness, poor heat resistance, slow crystallization rate and high cost, have limited pure PLA and its composites’ potential applications. Carbon nanotubes (CNT) is one kinds of one-dimensional nano-materials with hollow structures composed of only hybrid sp2 C-C bonds. CNT is identified as the most preferred candidate for space elevators, due to its excellent mechanical properties and electrical conductivity. CNT/PLA blends will exert synergistic effects of their individual component, bring breakthroughs in their structures and various properties, and open up potential application scenarios for the resultant composite materials. In this review, recent advances on fabrication methods, structure manipulation, property optimization and application scenarios of CNT/PLA composites were summarized. Especially, the effects of CNT content and pretreatment methods on the microstructures and properties of the resultant PLA composites were focused on in this review. Also, future prospective of CNT/PLA composite materials were addressed.
References
R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made, Sci Adv 3(7) (2017). https://doi.org/10.1126/sciadv.1700782
F. Qian, R. Jia, M. Cheng, A. Chaudhary, S. Melhi, S.D. Mekkey, N. Zhu, C. Wang, F. Razak, X. Xu, C. Yan, X. Bao, Q. Jiang, J. Wang, M. Hu, An overview of polylactic acid (PLA) nanocomposites for sensors, Adv Compos Hybrid Mater 7(3) (2024) 75. https://doi.org/10.1007/s42114-024-00887-6
N. Shekhar, A. Mondal, Synthesis, properties, environmental degradation, processing, and applications of polylactic acid (PLA): An overview, Polym Bull (2024). https://doi.org/10.1007/s00289-024-05252-7
T. Qiang, Y. Chou, H. Gao, Environmental impacts of styrene-butadiene-styrene toughened wood fiber/polylactide composites: A cradle-to-gate life cycle assessment, Int J Env Res Pub Health 16(18) (2019). https://doi.org/10.3390/ijerph16183402
T. Qiang, J. Wang, M.P. Wolcott, Facile preparation of cellulose/polylactide composite materials with tunable mechanical properties, Polym-Plast Technol 57(13) (2018) 1288-1295. https://doi.org/10.1080/03602559.2017.1381243
T. Qiang, J. Wang, P.M. Wolcott, Facile fabrication of 100% bio-based and degradable ternary cellulose/PHBV/PLA composites, Materials 11(2) (2018). https://doi.org/10.3390/ma11020330
H. Gao, T. Qiang, Fracture surface morphology and impact strength of cellulose/PLA composites, Materials 10(6) (2017). https://doi.org/10.3390/ma10060624
V.O. Bulatovi, V. Mandi, D.K. Grgi, A. Ivani, Biodegradable polymer blends based on thermoplastic starch, J Polym Environ 29(2) (2021). https://doi.org/10.1007/s10924-020-01874-w
L. Bouapao, H. Tsuji, K. Tashiro, J. Zhang, M. Hanesaka, Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly(lactide)s, Polymer 50(16) (2009) 4007-4017. https://doi.org/10.1016/j.polymer.2009.06.040
M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: Present and future commercial applications, Science 339(6119) (2013) 535-539. https://doi.org/10.1126/science.1222453
Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties, Prog Polym Sci 35(3) (2010) 357-401. https://doi.org/10.1016/j.progpolymsci.2009.09.003
Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review, Prog Polym Sci 36(7) (2011) 914-944. https://doi.org/10.1016/j.progpolymsci.2010.11.004
S. Barrau, C. Vanmansart, M. Moreau, A. Addad, G. Stoclet, J.M. Lefebvre, R. Seguela, Crystallization behavior of carbon nanotube-polylactide nanocomposites, Macromolecules 44(16) (2011) 6496-6502. https://doi.org/10.1021/ma200842n
X. Zhao, J. Yu, X. Wang, Z. Huang, W. Zhou, S. Peng, Strong synergistic toughening and compatibilization enhancement of carbon nanotubes and multi-functional epoxy compatibilizer in high toughened polylactic acid (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blends, Int J Biol Macromol 250 (2023) 126204. https://doi.org/10.1016/j.ijbiomac.2023.126204
H. Barangizi, J. Krajenta, A. Pawlak, The influence of entanglements of macromolecules on the mechanical and thermal properties of polylactide composites with carbon nanotubes, Express Polym Lett 17(7) (2023) 738-758. https://doi.org/10.3144/expresspolymlett.2023.55
L. Pan, Q. Lv, N. Xu, Properties and mechanism of antistatic biodegradable polylactic acid/multi-walled carbon nanotube composites, J Eng Fiber Fabr 15 (2020). https://doi.org/10.1177/1558925020968813
Y. Zhou, L. Lei, B. Yang, J. Li, J. Ren, Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites, Polym Test 68 (2018) 34-38. https://doi.org/10.1016/j.polymertesting.2018.03.044
T. Qiang, X. Qi, H. Gao, H. Qiang, S. Wang, L. Hu, N. Hu, UV-shielding, flexible and enhanced thermal- conductive polylactide composites modified with single-layered, large-sized MXene nano-sheets, Polym Bull (2024). https://doi.org/10.1007/s00289-024-05303-z
K.D.M. Nayara, F.M. Eduardo, L.M.S.O. Rodrigo, A.W.D.B. Idália, P.B.M. João, E. Elisa, S.A. Suelen, M.R.D.V. Luana, R.P. Fabio, D.S.T. Eliandra, Synergistic effect of adding bioglass and carbon nanotubes on poly (lactic acid) porous membranes for guided bone regeneration, Mater Sci Eng C 117 (2020). https://doi.org/10.1016/j.msec.2020.111327
S. Yang, J. Xu, Y. Li, J. Lei, G. Zhong, R. Wang, Z. Li, Effects of solvents on stereocomplex crystallization of high-molecular-weight polylactic acid racemic blends in the presence of carbon nanotubes, Macromol Chem Phys 218(21) (2017). https://doi.org/10.1002/macp.201700292
R. Cui, K. Jiang, M. Yuan, J. Cao, L. Lin, Z. Tang, Y. Qin, Antimicrobial film based on polylactic acid and carbon nanotube for controlled cinnamaldehyde release, J Mater Res Technol 9(5) (2020) 10130-10138. https://doi.org/10.1016/j.jmrt.2020.07.016
B. Yu, Z. Zhao, S. Fu, L. Meng, Y. Liu, F. Chen, K. Wang, Q. Fu, Fabrication of PLA/CNC/CNT conductive composites for high electromagnetic interference shielding based on Pickering emulsions method, Compos Part A 125 (2019) 105558. https://doi.org/10.1016/j.compositesa.2019.105558
Q. Li, Q. Zhou, D. Deng, Q. Yu, L. Gu, K. Gong, K. Xu, Enhanced thermal and electrical properties of poly(D,L-lactide)/multi-walled carbon nanotubes composites by in-situ polymerization, T Nonferr Metal Soc 23(5) (2013) 1421-1427. https://doi.org/10.1016/S1003-6326(13)62612-6
Q. Wang, H. Wang, P. Du, J. Liu, D. Liu, P. Liu, Porous polylactic acid/carbon nanotubes/polyaniline composite film as flexible free-standing electrode for supercapacitors, Electrochim ACTA 294 (2019) 312-324. https://doi.org/10.1016/j.electacta.2018.10.108
K.J. Ardila-Fierro, J.G. Hernandez, Sustainability assessment of mechanochemistry by using the twelve principles of green chemistry, ChemSusChem 14(10) (2021) 2145-2162. https://doi.org/10.1002/cssc.202100478
E.M. Lloyd, J.R. Vakil, Y. Yao, N.R. Sottos, S.L. Craig, Covalent mechanochemistry and contemporary polymer network chemistry: A marriage in the making, J Am Chem Soc 145(2) (2023) 751-768. https://doi.org/10.1021/jacs.2c09623
J. Li, C. Nagamani, J.S. Moore, Polymer mechanochemistry: From destructive to productive, Accounts Chem Res 48(8) (2015) 2181-2190. https://doi.org/10.1021/acs.accounts.5b00184
张淳, 付豪, 杨昌华, 聂敏, 李怡俊, 固相力化学反应器制备聚乳酸/碳纳米管纳米复合材料及性能 研究, 化工新型材料 49(12) (2021) 89-92. https://doi.org/10.12677/MS.2022.124040
T.M. Joseph, A. Kallingal, A.M. Suresh, D.K. Mahapatra, M.S. Hasanin, J. Haponiuk, S. Thomas, 3D printing of polylactic acid: recent advances and opportunities, Int J Adv Manuf Tech 125(3-4) (2023) 1015-1035. https://doi.org/10.1007/s00170-022-10795-y
Z. Liu, Y. Wang, B. Wu, C. Cui, Y. Guo, C. Yan, A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts, Int J Adv Manuf Tech 102(9-12) (2019) 2877-2889. https://doi.org/10.1007/s00170-019-03332-x
J. Liu, L. Sun, W. Xu, Q. Wang, S. Yu, J. Sun, Current advances and future perspectives of 3D printing natural-derived biopolymers, Carbohyd Polym 207 (2019) 297-316. https://doi.org/10.1016/j.carbpol.2018.11.077
X. Li, G. Zhang, W. Li, Z. Yu, K. Yang, H. Lan, The electric-field-driven fusion jetting 3D printing for fabricating high resolution polylactic acid/multi-walled carbon nanotube composite micro-scale structures, Micromachines 11(12) (2020). https://doi.org/10.3390/mi11121132
S. Shi, Z. Peng, J. Jing, L. Yang, Y. Chen, 3D printing of delicately controllable cellular nanocomposites based on polylactic acid incorporating graphene/carbon nanotube hybrids for efficient electromagnetic interference shielding, ACS Sustain Chem Eng 8(21) (2020) 7962-7972. https://doi.org/10.1021/acssuschemeng.0c01877
W. Liu, X. Zhu, H. Gao, X. Su, X. Wu, Preparation and characterization of PLA foam chain extended through grafting octa(epoxycyclohexyl) POSS onto carbon nanotubes, Cell Polym 39(3) (2020) 117-137. https://doi.org/10.1177/0262489320912521
L. Yang, Y. Dexian, L. Wei, Z. Hongfu, Z. Yuxia, W. Xiangdong, Fabrication of biodegradable poly (lactic acid)/carbon nanotube nanocomposite foams: Significant improvement on rheological property and foamability, Int J Biol Macromol 163 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.094
I. Montes-Zavala, E.O. Castrejon-Gonzalez, G. Sanchez-Balderas, E. Perez, J.A. Gonzalez-Calderon, Effect of H bonds on thermal behavior and cohesion in polylactic acid nanocomposites and nitrogen- doped carbon nanotubes, J MATER SCI 55(8) (2020) 3354-3368. https://doi.org/10.1007/s10853-019-04245-6
C. Hu, Z. Li, Y. Wang, J. Gao, K. Dai, G. Zheng, C. Liu, C. Shen, H. Song, Z. Guo, Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes, J Mater Chem C 5(9) (2017) 2318-2328. https://doi.org/10.1039/C6TC05261D
张琦, 权慧, 刘建叶, 高达利, 张师军, 改性碳纳米管增强聚乳酸复合材料的制备及其性能, 合成树 脂及塑料 39(2) (2022) 5-10+24.
R. Kotsilkova, S. Tabakova, R. Ivanova, Effect of graphene nanoplatelets and multiwalled carbon nanotubes on the viscous and viscoelastic properties and printability of polylactide nanocomposites, Mech Time-Depend Mat (2021). https://doi.org/10.1007/s11043-021-09503-2
G.M. Neelgund, A. Oki, Contribution of polylactic acid and Pd nanoparticles in the enhanced photothermal effect of carbon nanotubes, ChemistrySelect 5(35) (2020) 11020-11028. https://doi.org/10.1002/slct.202003191
W. Liu, X. Wu, S. Liu, X. Cheng, C. Zhang, CNT@LDH functionalized poly(lactic acid) membranes with super oil-water separation and real‐time press sensing properties, Polym Compos 43(9) (2022) 6548-6559. https://doi.org/10.1002/pc.26968
C. Kuan, C. Chen, H. Kuan, K. Lin, Multi-walled carbon nanotube reinforced poly (L-lactic acid), J Phys Chem Solids 69 (2008) 1399-1402. https://doi.org/10.1016/j.jpcs.2007.10.061
C. Teng, C.M. Ma, B. Cheng, Y. Shih, J. Chen, Y. Hsiao, Mechanical and thermal properties of polylactide-grafted vapor-grown carbon nanofiber/polylactide nanocomposites, Compos Part A 42(8) (2011) 928-934. https://doi.org/10.1016/j.compositesa.2011.03.021
S. Wang, Y. Wu, Y. Cheng, W. Hu, The development of polylactic acid/multi-wall carbon nanotubes/polyethylene glycol scaffolds for bone tissue regeneration application, Polymers 13(11) (2021). https://doi.org/10.3390/polym13111740
T. Vu, P. Nikaeen, M. Akobi, D. Depan, W. Chirdon, Enhanced nucleation and crystallization in PLA/CNT composites via disperse orange 3 with corresponding improvement in nanomechanical properties, Polym Advan Technol 31(3) (2020) 415-424. https://doi.org/10.1002/pat.4777
T. Makowski, M. Svyntkivska, E. Piorkowska, D. Kregiel, Multifunctional polylactide nonwovens with 3D network of multiwall carbon nanotubes, Appl Surf Sci 527 (2020). https://doi.org/10.1016/j.apsusc.2020.146898
L. Wang, J. Qiu, E. Sakai, Mechanical and electrical properties of polylactic acid/carbon nanotube composites by rolling process, Sci Eng Compos Mater 25(5) (2018) 891-901. https://doi.org/10.1515/secm-2017-0113
F. Zhang, W. Jiang, X. Song, J. Kang, Y. Cao, M. Xiang, Effects of hyperbranched polyester-modified carbon nanotubes on the crystallization kinetics of polylactic acid, ACS Omega 6(15) (2021) 10362-10370. https://doi.org/10.1021/acsomega.1c00738
B. Tiantian, Z. Bo, L. Hu, W. Yaming, S. Gang, L. Chuntai, S. Changyu, Biodegradable poly(lactic acid) nanocomposites reinforced and toughened by carbon nanotubes/clay hybrids, Int J Biol Macromol 151 (2020) 628-634. https://doi.org/10.1016/j.ijbiomac.2020.02.209
Y. Zare, K.Y. Rhee, Following the morphological and thermal properties of PLA/PEO blends containing carbon nanotubes (CNTs) during hydrolytic degradation, Compos Part B 175 (2019) 107132. https://doi.org/10.1016/j.compositesb.2019.107132
M. Svyntkivska, T. Makowski, E. Piorkowska, M. Brzezinski, A. Herc, A. Kowalewska, Modification of polylactide nonwovens with carbon nanotubes and ladder poly(silsesquioxane), Molecules 26(5) (2021). https://doi.org/10.3390/molecules26051353
R. Scaffaro, A. Maio, Integrated ternary bionanocomposites with superior mechanical performance via the synergistic role of graphene and plasma treated carbon nanotubes, Compos Part B 168 (2019) 550- 559. https://doi.org/10.1016/j.compositesb.2019.03.076
O.M. Sanusi, A. Benelfellah, L. Papadopoulos, Z. Terzopoulou, L. Malletzidou, I.G. Vasileiadis, K. Chrissafis, D.N. Bikiaris, H.N. Aït, Influence of montmorillonite/carbon nanotube hybrid nanofillers on the properties of poly(lactic acid), Appl Clay Sci 201 (2020) 105925. https://doi.org/10.1016/j.clay.2020.105925
P. Szatkowski, L. Czechowski, J. Gralewski, M. Szatkowska, Mechanical properties of polylactide admixed with carbon nanotubes or graphene nanopowder, Materials 14(20) (2021). https://doi.org/10.3390/ma14205955
J. Urquijo, N. Aranburu, S. Dagréou, G. Guerrica-Echevarría, J.I. Eguiazábal, CNT-induced morphology and its effect on properties in PLA/PBAT-based nanocomposites, Eur Polym J 93 (2017) 545-555. https://doi.org/10.1016/j.eurpolymj.2017.06.035
Z. Bo, B. Tiantian, W. Pan, W. Yaming, L. Chuntai, S. Changyu, Selective dispersion of carbon nanotubes and nanoclay in biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with improved toughness, strength and thermal stability, Int J Biol Macromol 153 (2020) 1272-1280. https://doi.org/10.1016/j.ijbiomac.2019.10.262
Y. Wang, Y. Mei, Q. Wang, W. Wei, F. Huang, Y. Li, J. Li, Z. Zhou, Improved fracture toughness and ductility of PLA composites by incorporating a small amount of surface-modified helical carbon nanotubes, Compos Part B 162 (2019) 54-61. https://doi.org/10.1016/j.compositesb.2018.10.060
C. Yang, T. Huang, J. Yang, N. Zhang, Y. Wang, Z. Zhou, Carbon nanotubes induced brittle-ductile transition behavior of the polypropylene/ethylene-propylene-diene terpolymer blends, Compos Sci Technol 139 (2017) 109-116. https://doi.org/10.1016/j.compscitech.2016.12.016
Y.Y. Shi, W.B. Zhang, J.H. Yang, T. Huang, N. Zhang, Y. Wang, G.P. Yuan, C.L. Zhang, Super toughening of the poly(L-lactide)/thermoplastic polyurethane blends by carbon nanotubes, RSC Adv 3 (2013) 26271. https://doi.org/10.1039/c3ra43253j
A.P.B. Silva, L.S. Montagna, F.R. Passador, M.C. Rezende, A.P. Lemes, Biodegradable nanocomposites based on PLA/PHBV blend reinforced with carbon nanotubes with potential for electrical and electromagnetic applications, Express Polym Lett 15(10) (2021) 987-1003. https://doi.org/10.3144/expresspolymlett.2021.79
E.J. Dil, M. Arjmand, I.O. Navas, U. Sundararaj, B.D. Favis, Interface bridging of multiwalled carbon nanotubes in polylactic acid/poly(butylene adipate-co-terephthalate): Morphology, rheology, and electrical conductivity, Macromolecules 53(22) (2020) 10267-10277. https://doi.org/10.1021/acs.macromol.0c01525
E.C. Lopes Pereira, M.E.C. Fernandes Da Silva, K. Pontes, B.G. Soares, Influence of protonic ionic liquid on the dispersion of carbon nanotube in PLA/EVA blends and blend compatibilization, Front Mater 6 (2019) 234. https://doi.org/10.3389/fmats.2019.00234
Y. Wang, Z. Fan, H. Zhang, J. Guo, D. Yan, S. Wang, K. Dai, Z. Li, 3D-printing of segregated carbon nanotube/polylactic acid composite with enhanced electromagnetic interference shielding and mechanical performance, Mater Design 197 (2021). https://doi.org/10.1016/j.matdes.2020.109222
N. H., K. Y., Elucidating the plasticizing effect on mechanical and thermal properties of poly(lactic acid)/carbon nanotubes nanocomposites, Polym Bull 78(12) (2020). https://doi.org/10.1007/s00289-020-03471-2
X.H. Gao, D. Xie, C. Yang, Effects of a PLA/PBAT biodegradable film mulch as a replacement of polyethylene film and their residues on crop and soil environment, Agric Water Manage 255 (2021) 107053. https://doi.org/10.1016/j.agwat.2021.107053
T. Vu, P. Nikaeen, W. Chirdon, A. Khattab, D. Depan, Improved weathering performance of poly(lactic acid) through carbon nanotubes addition: Thermal, microstructural, and nanomechanical analyses, Biomimetics 5(4) (2020). https://doi.org/10.3390/biomimetics5040061
张硕, 赵层层, 高国金, 明津法, 黄晓卫, 王雪芳, 王娜, 宁新, 碳纳米管含量对聚乳酸/碳纳米管纤维 过滤膜性能的影响, 毛纺科技 50(8) (2022) 98-103. https://doi.org/10.3788/CJL202249.0202301
S. Liu, G. Wu, X. Chen, X. Zhang, J. Yu, M. Liu, Y. Zhang, P. Wang, Degradation behavior in vitro of carbon nanotubes (CNTs)/poly(lactic acid) (PLA) composite suture, Polymers 11(6) (2019). https://doi.org/10.3390/polym11061015
L. Gan, A. Geng, L. Jin, Q. Zhong, L. Wang, L. Xu, C. Mei, Antibacterial nanocomposite based on carbon nanotubes-silver nanoparticles-co-doped polylactic acid, Polym Bull 77(2) (2020) 793-804. https://doi.org/10.1007/s00289-019-02776-1
V. Gupta, F. Alam, P. Verma, A.M. Kannan, S. Kumar, Additive manufacturing enabled, microarchitected, hierarchically porous polylactic-acid/lithium iron phosphate/carbon nanotube nanocomposite electrodes for high performance Li-Ion batteries, J Power Sources 494 (2021). https://doi.org/10.1016/j.jpowsour.2021.229625