Recovery of Phosphors by Beneficiation Technology
DOI:
https://doi.org/10.12974/2311-8717.2024.12.02Keywords:
Phosphate, Beneficiation, Flotation, Electrostatic separation, Gravity separation, Magnetic separationAbstract
Phosphorous is indispensable in the phosphoric acid industry, fertilizers, and elemental phosphorus production due to its high economic importance. The way to successfully upgrade phosphate ore was based on a full understanding of its mineralogy, mineral surface properties, mineral distribution and liberation. Most phosphate ores are not suitable for direct use in the acidulation process because they have relatively low P2O5 contents and generally contain many impurities. Thus, low-grade phosphate ores must be pretreated to reach a suitable phosphate concentrate by the following beneficiation techniques: flotation, attrition scrubbing and deslming, electrostatic separations, magnetic separation, gravity separation and calcination. Flotation was predominantly used for the beneficiation of phosphate ores, while calcination could be feasibly used when the fuel energy cost was low and the water source was limited. The chemical composition and texture of phosphate ores should be considered when applying attrition scrubbing and desliming, magnetic separation and gravity separation. Commonly, some of the above technologies should be combined to obtain excellent results.
References
B. Li, I.A. Udugama, S.S. Mansouri, W. Yu, Saeid Baroutian, K.V. Gernaey, B.R. Young, An Exploration of Barriers for Commercializing Phosphorous Recovery Technologies, Journal of Cleaner Production, 229 (2019) 1342-1354. https://doi.org/10.1016/j.jclepro.2019.05.042
P. Sukdeo, S. Pillay, A. Bissessur, A geochemical assessment of the middle and lower Mvoti river system, KwaZulu-Natal, South Africa, Environmental Earth Sciences, 66 (2012) 481-487. https://doi.org/10.1007/s12665-011-1256-9
W.A. Farooq, F.N. Al-Mutairi, A.E.M. Khater, A.S. Al-Dwayyan, M.S. AlSalhi, M. Atif, Elemental analysis of fertilizer using laser induced breakdown spectroscopy, Optics and Spectroscopy, 112 (2012) 874-880. https://doi.org/10.1134/S0030400X12060082
Q. Bao, L. Guo, Z. Guo, A novel direct reduction-flash smelting separation process of treating high phosphorous iron ore fines, Powder Technology, 377 (2021) 149-162. https://doi.org/10.1016/j.powtec.2020.08.066
R. El Bamiki, O. Raji, M. Ouabid, A. Elghali, O. Khadiri Yazami, J.-L. Bodinier, Phosphate Rocks: A Review of Sedimentary and Igneous Occurrences in Morocco, Minerals, 11 (2021) 1137. https://doi.org/10.3390/min11101137
M. Derhy, Y. Taha, R. Hakkou, M. Benzaazoua, Review of the Main Factors Affecting the Flotation of Phosphate Ores, Minerals, 10 (2020) 1109. https://doi.org/10.3390/min10121109
J. Anawati, G. Azimi, Recovery and separation of phosphorus as dicalcium phosphate dihydrate for fertilizer and livestock feed additive production from a low-grade phosphate ore, RSC Adv, 10 (2020) 38640-38653. https://doi.org/10.1039/D0RA07210A
X. Dong, L. Siqing, Y. Yanqing, L. Hailin, P. Yi, A Review on New Technological Progress for Beneficiation of Refractory Phosphate Ore in China, IOP Conference Series: Earth and Environmental Science, 63 (2017) 012043. https://doi.org/10.1088/1755-1315/63/1/012043
B.W. Nelson, Sedimentary Phosphate Method for Estimating Paleosalinities, Science, 158 (1967) 917-920. https://doi.org/10.1126/science.158.3803.917
P. Lacerda Silva, R.M. Bustin, Significance and Distribution of Apatite in the Triassic Doig Phosphate Zone, Western Canada Sedimentary Basin, in: Minerals, 2020. https://doi.org/10.20944/preprints202009.0170.v1
D.C. White, W.M. Davis, J.S. Nickels, J.D. King, R.J. Bobbie, Determination of the sedimentary microbial biomass by extractible lipid phosphate, Oecologia, 40 (1979) 51-62. https://doi.org/10.1007/BF00388810
Ruan, He, Chi, Review on Beneficiation Techniques and Reagents Used for Phosphate Ores, Minerals, 9 (2019) 253. https://doi.org/10.3390/min9040253
C.E. Bucholz, Coevolution of sedimentary and strongly peraluminous granite phosphorus records, Earth and Planetary Science Letters, 596 (2022) 117795. https://doi.org/10.1016/j.epsl.2022.117795
B.M. Moudgil, T.V. Vasudevan, Beneficiation of phosphate ores containing carbonate and silica gangue, Mining, Metallurgy & Exploration, 5 (1988) 120-124. https://doi.org/10.1007/BF03402500
S. Moukannaa, M. Loutou, M. Benzaazoua, L. Vitola, J. Alami, R. Hakkou, Recycling of phosphate mine tailings for the production of geopolymers, Journal of Cleaner Production, 185 (2018) 891-903. https://doi.org/10.1016/j.jclepro.2018.03.094
R. Dabbebi, P. Perumal, S. Moukannaa, Management and valorization of phosphate beneficiation slime: a critical review, International Journal of Environmental Science and Technology, 20 (2023) 11763-11776. https://doi.org/10.1007/s13762-023-04901-0
H. Amar, M. Benzaazoua, A. Elghali, R. Hakkou, Y. Taha, Waste rock reprocessing to enhance the sustainability of phosphate reserves: A critical review, Journal of Cleaner Production, 381 (2022) 135151. https://doi.org/10.1016/j.jclepro.2022.135151
X. Zhang, Y. Tao, F. Ma, Application of Falcon centrifuge in the separation of siliceous phosphate ore, Particulate Science and Technology, 40 (2022) 958-971. https://doi.org/10.1080/02726351.2022.2027056
R. Houot, R. Joussemet, J. Tracez, R. Brouard, Selective flotation of phosphatic ores having a siliceous and/or a carbonated gangue, International Journal of Mineral Processing, 14 (1985) 245-264. https://doi.org/10.1016/0301-7516(85)90049-3
G. Li, Y. Cao, J. Liu, D. Wang, Cyclonic flotation column of siliceous phosphate ore, International Journal of Mineral Processing, 110-111 (2012) 6-11. https://doi.org/10.1016/j.minpro.2012.03.008
F.L.d. Silva, G.F. Moreira, K.S. Pires, F.L.v. Kruger, F.G.d.S. Araújo, Quantitative phases characterization of clayey ceramics containing manganese ore tailings, Journal of Materials Research and Technology, 9 (2020) 11884-11894. https://doi.org/10.1016/j.jmrt.2020.08.075
M. Loutou, Y. Taha, M. Benzaazoua, Y. Daafi, R. Hakkou, Valorization of clay byproduct from moroccan phosphate mines for the production of fired bricks, Journal of Cleaner Production, 229 (2019) 169-179. https://doi.org/10.1016/j.jclepro.2019.05.003
M. Derqaoui, I. Aarab, A. Abidi, A. Yaacoubi, K. El Amari, A. Etahiri, A. Baçaoui, Review of the reagents used in the direct flotation of phosphate ores, Arabian Journal of Geosciences, 15 (2021) 49. https://doi.org/10.1007/s12517-021-09293-4
M. Prasad, A.K. Majumder, T.C. Rao, Reverse flotation of sedimentary calcareous/dolomitic rock phosphate ore - an overview, Mining, Metallurgy & Exploration, 17 (2000) 49-55. https://doi.org/10.1007/BF03402828
M. Gharabaghi, M. Noaparast, M. Irannajad, Selective leaching kinetics of low-grade calcareous phosphate ore in acetic acid, Hydrometallurgy, 95 (2009) 341-345. https://doi.org/10.1016/j.hydromet.2008.04.011
M. Gharabaghi, M. Irannajad, M. Noaparast, A review of the beneficiation of calcareous phosphate ores using organic acid leaching, Hydrometallurgy, 103 (2010) 96-107. https://doi.org/10.1016/j.hydromet.2010.03.002
F. Zhang, H. Liu, Y. Ma, Y. Li, C. Tie, Q. Zhao, Effects of Dissolved Organic Matter on the Release of Soluble Phosphorus and Fluoride Ion from Phosphate Ore, in: Separations, 2023. https://doi.org/10.3390/separations10080425
Y. Lei, B. Song, M. Saakes, R.D. van der Weijden, C.J.N. Buisman, Interaction of calcium, phosphorus and natural organic matter in electrochemical recovery of phosphate, Water Research, 142 (2018) 10-17. https://doi.org/10.1016/j.watres.2018.05.035
F.S. Mabagala, M.E. Mng'ong'o, On the tropical soils; The influence of organic matter (OM) on phosphate bioavailability, Saudi Journal of Biological Sciences, 29 (2022) 3635-3641. https://doi.org/10.1016/j.sjbs.2022.02.056
L.A.F. Barros, E.E. Ferreira, A.E.C. Peres, Floatability of apatites and gangue minerals of an igneous phosphate ore, Minerals Engineering, 21 (2008) 994-999. https://doi.org/10.1016/j.mineng.2008.04.012
Y.-x. Ma, S.E. Hoff, X.-q. Huang, J. Liu, Q.-q. Wan, Q. Song, J.-t. Gu, H. Heinz, F.R. Tay, L.-n. Niu, Involvement of prenucleation clusters in calcium phosphate mineralization of collagen, Acta Biomaterialia, 120 (2021) 213-223. https://doi.org/10.1016/j.actbio.2020.07.038
R. Pokhrel, B.S. Gerstman, J.D. Hutcheson, P.P. Chapagain, In Silico Investigations of Calcium Phosphate Mineralization in Extracellular Vesicles, The Journal of Physical Chemistry B, 122 (2018) 3782-3789. https://doi.org/10.1021/acs.jpcb.8b00169
B.O. Ferguson, L.C. Murdoch, M. Trumm, F. Liu, A.M. Rao, B.A. Powell, Mechanisms and kinetics of citrate-promoted dissolution of a uranyl phosphate mineral, Geochimica et Cosmochimica Acta, 318 (2022) 247-262. https://doi.org/10.1016/j.gca.2021.11.023
S. Chande, C. Bergwitz, Role of phosphate sensing in bone and mineral metabolism, Nature Reviews Endocrinology, 14 (2018) 637-655. https://doi.org/10.1038/s41574-018-0076-3
X. Liu, X. Jing, P. Liu, M. Pan, Z. Liu, X. Dai, J. Lin, Q. Li, F. Wang, S. Yang, L. Wang, C. Fan, DNA Framework-Encoded Mineralization of Calcium Phosphate, Chem, 6 (2020) 472-485. https://doi.org/10.1016/j.chempr.2019.12.003
D. Gruber, C. Ruiz-Agudo, H. Cölfen, Cationic Coacervates: Novel Phosphate Ionic Reservoir for the Mineralization of Calcium Phosphates, ACS Biomaterials Science & Engineering, 9 (2023) 1791-1795. https://doi.org/10.1021/acsbiomaterials.1c01090
T. Feng, M. Gull, A. Omran, H. Abbott-Lyon, M.A. Pasek, Evolution of Ephemeral Phosphate Minerals on Planetary Environments, ACS Earth and Space Chemistry, 5 (2021) 1647-1656. https://doi.org/10.1021/acsearthspacechem.1c00007
T. Brückner, M. Meininger, J. Groll, A.C. Kübler, U. Gbureck, Magnesium Phosphate Cement as Mineral Bone Adhesive, in: Materials, 2019. https://doi.org/10.3390/ma12233819
H.-K. Kim, M. Mizuno, W. Vongpatanasin, Phosphate, the forgotten mineral in hypertension, Current Opinion in Nephrology and Hypertension, 28 (2019).
https://doi.org/10.1097/MNH.0000000000000503
P. Wilfert, A.I. Dugulan, K. Goubitz, L. Korving, G.J. Witkamp, M.C.M. Van Loosdrecht, Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery, Water Research, 144 (2018) 312-321. https://doi.org/10.1016/j.watres.2018.07.020
M. Sajid, G. Bary, M. Asim, R. Ahmad, M. Irfan Ahamad, H. Alotaibi, A. Rehman, I. Khan, Y. Guoliang, Synoptic view on P ore beneficiation techniques, Alexandria Engineering Journal, 61 (2022) 3069-3092. https://doi.org/10.1016/j.aej.2021.08.039
H. Li, G. Lambiv Dzemua, Q. Liu, Beneficiation Studies of the Low-Grade Skarn Phosphate from Mactung Tungsten Deposit, Yukon, Canada, in: Minerals, 2021. https://doi.org/10.3390/min11040421
D. Tian, Z. Li, D. O'Connor, Z. Shen, The need to prioritize sustainable phosphate-based fertilizers, Soil Use and Management, 36 (2020) 351-354. https://doi.org/10.1111/sum.12578
T. Amarasinghe, C. Madhusha, I. Munaweera, N. Kottegoda, Review on Mechanisms of Phosphate Solubilization in Rock Phosphate Fertilizer, Communications in Soil Science and Plant Analysis, 53 (2022) 944-960. https://doi.org/10.1080/00103624.2022.2034849
S.S. Biswas, D.R. Biswas, R. Pal, Oxalic acid treated low grade rock phosphate can be a potent supplemental P source to grow wheat in inceptisol, Journal of Plant Nutrition, 46 (2023) 2581-2594. https://doi.org/10.1080/01904167.2022.2160737
Y. Pelovski, V. Petkova, I. Dombalov, Thermotribochemical treatment of low grade natural phosphates, Journal of Thermal Analysis and Calorimetry, 88 (2007) 207-212. https://doi.org/10.1007/s10973-006-8095-z
B. Peng, X. Li, Z. Ma, Y. Qi, Release of fluorine and chlorine during increase of phosphate rock grade by calcination and digestion, Environmental Pollution, 270 (2021) 116321. https://doi.org/10.1016/j.envpol.2020.116321
D.R. Biswas, G. Narayanasamy, S.C. Datta, G. Singh, M. Begum, D. Maiti, A. Mishra, B.B. Basak, Changes in Nutrient Status During Preparation of Enriched Organomineral Fertilizers Using Rice Straw, Low‐Grade Rock Phosphate, Waste Mica, and Phosphate Solubilizing Microorganism, Communications in Soil Science and Plant Analysis, 40 (2009) 2285-2307. https://doi.org/10.1080/00103620902961243
T. Aleksandrova, A. Elbendari, N. Nikolaeva, Beneficiation of a Low-grade Phosphate Ore Using a Reverse Flotation Technique, Mineral Processing and Extractive Metallurgy Review, 43 (2020) 22-27. https://doi.org/10.1080/08827508.2020.1806834
X. Liu, Y. Zhang, T. Liu, Z. Cai, T. Chen, K. Sun, Beneficiation of a Sedimentary Phosphate Ore by a Combination of Spiral Gravity and Direct-Reverse Flotation, Minerals, 6 (2016) 38. https://doi.org/10.3390/min6020038
A.J. Teague, M.C. Lollback, The beneficiation of ultrafine phosphate, Minerals Engineering, 27-28 (2012) 52-59. https://doi.org/10.1016/j.mineng.2011.12.007
A. Tohry, A. Dehghani, Effect of sodium silicate on the reverse anionic flotation of a siliceous-phosphorus iron ore, Separation and Purification Technology, 164 (2016) 28-33. https://doi.org/10.1016/j.seppur.2016.03.012
N. Nan, Y. Zhu, Y. Han, Flotation performance and mechanism of α-Bromolauric acid on separation of hematite and fluorapatite, Minerals Engineering, 132 (2019) 162-168. https://doi.org/10.1016/j.mineng.2018.11.048
F. Nakhaei, M. Irannajad, Reagents types in flotation of iron oxide minerals: A review, Mineral Processing and Extractive Metallurgy Review, 39 (2018) 89-124. https://doi.org/10.1080/08827508.2017.1391245
M. Derhy, Y. Taha, R. Hakkou, M. Benzaazoua, Review of the Main Factors Affecting the Flotation of Phosphate Ores, in: Minerals, 2020. https://doi.org/10.3390/min10121109
L.O. Filippov, A. Duverger, I.V. Filippova, H. Kasaini, J. Thiry, Selective flotation of silicates and Ca-bearing minerals: The role of nonionic reagent on cationic flotation, Minerals Engineering, 36-38 (2012) 314-323. https://doi.org/10.1016/j.mineng.2012.07.013
K. Sun, T. Liu, Y. Zhang, X. Liu, B. Wang, C. Xu, Application and Mechanism of Anionic Collector Sodium Dodecyl Sulfate (SDS) in Phosphate Beneficiation, in: Minerals, 2017. https://doi.org/10.3390/min7020029
A. Alsafasfeh, L. Alagha, Recovery of Phosphate Minerals from Plant Tailings Using Direct Froth Flotation, in: Minerals, 2017. https://doi.org/10.3390/min7080145
H. Yu, H. Wang, C. Sun, Comparative studies on phosphate ore flotation collectors prepared by hogwash oil from different regions, International Journal of Mining Science and Technology, 28 (2018) 453-459. https://doi.org/10.1016/j.ijmst.2018.04.010
A. Clapperton, C. Bazin, D. Downey, J.-S. Marois, Production of a Phosphate Concentrate from the Tailings of a Niobium Ore Concentrator, in: Minerals, 2020. https://doi.org/10.3390/min10080692
H. Zhang, W. Sun, C. Zhang, J. He, D. Chen, Y. Zhu, Adsorption performance and mechanism of the commonly used collectors with Oxygen-containing functional group on the ilmenite surface: A DFT study, Journal of Molecular Liquids, 346 (2022) 117829. https://doi.org/10.1016/j.molliq.2021.117829
Y. Ruan, Z. Zhang, H. Luo, C. Xiao, F. Zhou, R. Chi, Ambient Temperature Flotation of Sedimentary Phosphate Ore Using Cottonseed Oil as a Collector, in: Minerals, 2017. https://doi.org/10.3390/min7050065
S. Puvvada, P. Thompson, J.D. Miller, Dolomite rejection from crushed pebble phosphate by attrition scrubbing, Minerals Engineering, 143 (2019) 105932. https://doi.org/10.1016/j.mineng.2019.105932
S.S. Ibrahim, K.E. Yassin, T.R. Boulos, Processing of an East Mediterranean phosphate ore sample by an integrated attrition scrubbing/classification scheme (part one), Separation Science and Technology, 55 (2020) 967-979. https://doi.org/10.1080/01496395.2019.1575413
R. Ciccu, M. Ghiani, G. Ferrara, Selective Tribocharging of Particles for Separation, KONA Powder and Particle Journal, 11 (1993) 5-16. https://doi.org/10.14356/kona.1993006
S. Moradi, D. Moseley, F. Hrach, A. Gupta, Electrostatic beneficiation of diatomaceous earth, International Journal of Mineral Processing, 169 (2017) 142-161. https://doi.org/10.1016/j.minpro.2017.11.008
L. Zhang, J. Hou, X.T. Bi, J.R. Grace, T. Janke, C. Arato, Electrostatic beneficiation of fly ash in a free-falling system, Particuology, 10 (2012) 154-160. https://doi.org/10.1016/j.partic.2011.07.006
J.K. Kim, H.C. Cho, S.C. Kim, H.S. Chun, Electrostatic beneficiation of fly ash using an ejector‐tribocharger, Journal of Environmental Science and Health, Part A, 35 (2000) 357-377. https://doi.org/10.1080/10934520009376976
C. Lv, S. Wen, K. Yang, S. Bai, Beneficiation of High-Phosphorus Siderite Ore by Acid Leaching and Alkaline Oxide Reinforced Carbothermic Reduction-Magnetic Separation Process, steel research international, 88 (2017) 1600314. https://doi.org/10.1002/srin.201600314
J. Yin, X. Lv, C. Bai, G. Qiu, S. Ma, B. Xie, Dephosphorization of Iron Ore Bearing High Phosphorous by Carbothermic Reduction Assisted with Microwave and Magnetic Separation, ISIJ International, 52 (2012) 1579-1584. https://doi.org/10.2355/isijinternational.52.1579
Q.F. Shu, Y. Liu, Effects of basicity, MgO and MnO on mineralogical phases of CaO-FeOx-SiO2-P2O5 slag, Ironmaking & Steelmaking, 45 (2018) 363-370. https://doi.org/10.1080/03019233.2016.1274463
S.K. Tripathy, D.S. Rao, C. Eswaraiah, D. Sahoo, Applied Mineralogical Investigation on the Nature of Phosphorous in the Basic Oxygen Furnace Slag, Transactions of the Indian Institute of Metals, 74 (2021) 2319-2334. https://doi.org/10.1007/s12666-021-02319-1
G. Li, J. Liang, J. Long, D. Guan, Z. Li, S. Seetharaman, J. Li, A Novel Process for Separation of Magnetite and Phosphorous Phases from a CaO-SiO2-FeO-P2O5 Slag, ISIJ International, 62 (2022) 1556-1559. https://doi.org/10.2355/isijinternational.ISIJINT-2021-578
A.M.H. Shaikh, S.G. Dixit, Beneficiation of phosphate ores using high gradient magnetic separation, International Journal of Mineral Processing, 37 (1993) 149-162. https://doi.org/10.1016/0301-7516(93)90010-8
J. Gao, Y. Zhong, L. Guo, Z. Guo, Separation of Iron Phase and P-Bearing Slag Phase from Gaseous-Reduced, High-Phosphorous Oolitic Iron Ore at 1473 K (1200 °C) by Super Gravity, Metallurgical and Materials Transactions B, 47 (2016) 1080-1092. https://doi.org/10.1007/s11663-015-0575-8
X. Tang, R. Li, D. Han, X. Wu, Impacts of electrokinetic isolation of phosphorus through pore water drainage on sediment phosphorus storage dynamics, Environmental Pollution, 266 (2020) 115210. https://doi.org/10.1016/j.envpol.2020.115210
L. Palliyaguru, U.S. Kulathunga, L.I. Jayarathna, C.D. Jayaweera, P.M. Jayaweera, A simple and novel synthetic route to prepare anatase TiO2 nanopowders from natural ilmenite via the H3PO4/NH3 process, International Journal of Minerals, Metallurgy and Materials, 27 (2020) 846-855. https://doi.org/10.1007/s12613-020-2030-3
M.H. Woo, J.M. Cho, K.-W. Jun, Y.J. Lee, J.W. Bae, Thermally Stabilized Cobalt-Based Fischer-Tropsch Catalysts by Phosphorous Modification of Al2O3: Effect of Calcination Temperatures on Catalyst Stability, ChemCatChem, 7 (2015) 1460-1469. https://doi.org/10.1002/cctc.201402994
K.C. Bal Krishna, M.R. Niaz, D.C. Sarker, T. Jansen, Phosphorous removal from aqueous solution can be enhanced through the calcination of lime sludge, Journal of Environmental Management, 200 (2017) 359-365. https://doi.org/10.1016/j.jenvman.2017.06.003
B. Meesschaert, A. Monballiu, K. Ghyselbrecht, C. Van Goethem, H. Halleux, L. Pinoy, Pilot scale recovery of phosphorus as calcium phosphate from nitrified UASB effluent of a potato processor and subsequent reuse in the wet process for phosphoric acid production, Journal of Environmental Chemical Engineering, 8 (2020) 104593. https://doi.org/10.1016/j.jece.2020.104593