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Abstract: Concrete is commonly used as a supporting material in the construction industry. Although it can withstand 
heavy loads, it is very brittle and sensitive to crack formation. Earthquakes and other environmental factors may result in 
the formation of cracks in the concrete structure. Penetration of chloride and atmospheric water with dissolved oxygen 
and carbon dioxide gasses through these cracks leads to corrosion of rebar (reinforcing steel bars). This paper is a short 
review of polymeric structures as concrete healing materials.  
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1. INTRODUCTION 

The fact that concrete is one of the most preferred 
construction materials was reflected by the global 
production volume of cement, which was around 4,1 
billion metric tons in 2022 [1]. Its high stiffness and 
compressional strength, ease of production, and 
availability of raw materials make concrete a favorable 
material for buildings [2-4]. On the other hand, highly 
brittle characteristics of concrete can lead to crack 
formation at any time during its service life [5, 6]. 
Besides, shrinkage failures (plastic, settlement, drying), 
weathering, thermal stress, or various factors 
contribute to crack development [7-10]. The naked eye 
cannot detect microcracks, but environmental 
conditions, earthquakes (even small geological 
movements), cyclic and static loading can turn them 
into larger ones [11]. The number and size of the 
cracks increase the permeability of concrete, which is 
one of the critical parameters reducing its durability 
[12]. Chloride ions, carbon dioxide and oxygen 
dissolved in water lead to corrosion on the rebar, 
resulting in potential structural failures [13-15]. 
Therefore, many traditional maintenance and fixing 
methods have been implemented to avoid this type of 
degradation. 

The effect of polymeric materials on crack healing 
was first reported by Malinskii in 1973 [16]. This 
approach was attracted considerable scientific attention 
in the last two decades [17-20]. Concrete self-healing 
methods are divided into two main categories, these 
are autogenous and autonomous methods [21]. In the 
autogenous approaches, self-healing is caused without 
any external intervention. On the contrary, autonomous 
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approaches include addition of engineered admixture 
[22].  

2. AUTOGENOUS HEALING APPROACHES  

Crack width reduction is categorized as an 
autogenous healing approach since it does not require 
any external operation [23, 24]. An engineered 
cementitious composite (ECC) material was first 
reported by Li et al. in 1998. In this study, ECC 
contained high-modulus polyethylene fibers (with 28 
and 38 µm diameters) for mechanical reinforcement 
and hollow glass fibers having 1.0 outer and 0.8 mm 
inner diameters, which was filled with ethyl 
cyanoacrylate glue as the sealing material. In this 
passive smart self-healing implementation, ECC’s 
having 28 and 30 µm diameter polyethylene fibers 
gave 30 and 50 µm average crack width reduction, 
respectively [25]. Herbert and Li prepared cementitious 
composites with a polycarboxylate-based high range 
water reducing admixture (HRWRA) and polyvinyl 
alcohol (PVA) fibers [26]. The ECC specimens were 
monitored under natural environmental conditions in 
Ann Arbor (Michigan, USA) using resonant frequency 
(RF) and mechanical reloading to figure out the rate 
and degree of self-healing. The experiments showed 
that self-healing of the specimens could be retained 
under multiple damage events [26].  

Superabsorbent polymers (SAP) are slightly 
crosslinked and highly hydrophilic three-dimensional 
network structures that they can absorb 4000 times 
their own masses [27, 28]. SAPs can retain and slowly 
release water in their pores and release water slowly to 
reduce self-desiccation shrinkage in hardening process 
[29]. In this method, SAP-containing slurry mixture is 
casted using conventional methods. SAP materials in 
the slurry swell slightly due to high pH (12.5-13) and 
ionic strength (100-450 mmol L-1) [30]. It is thought that 
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acrylate groups in SAPs can form bidentate complexes 
with calcium ions in the cementitious mixture, limiting 
their swelling [31-33]. In the hydration process of the 
cement, SAPs release the absorbed water and then 
shrink, producing a porous structure with pore sizes 
between 10 and100 micrometers [34]. These pores, 
which can be regarded as macrodefects, may cause 
formation and propagation of cracks through them. On 
the other hand, when the concrete is exposed to water 
with low ionic content, the SAPs swell much more than 
they do in the cementitious slurry. The SAPs enlarge 
beyond the pores and penetrate the cracks. Therefore, 
the cracks are filled with swollen SAP and further 
diffusion of water is prevented. Besides, SAPs may 
prevent enlargement of cracks and promote 
autogenous healing of the concrete [34].  

Kim and Schlangen prepared an ECC using 
Portland cement, fly ash, limestone powder, water, 
super plasticizer, PVA fibers (2% by volume) and 
SAPs. Three cementitious mixtures were prepared in 
three groups with different SAP contents (0%, 0.5%, 
and 1% by weight) and casted into molds. The control 
group specimens were tested in four-point bending 
experiments up to final failure on the 7th and 28th day 
after casting. The test specimens were subjected to 
2mm vertical deformation on the 7th and 28th day after 
casting. In these preloading tests, the average crack 
width in the SAP-containing samples were smaller than 
none-containing ones. Then, samples were cured in 9 
wet-dry cycles (1 hour wetting and three days drying) 
or lab air condition for 28 days. The cured samples 
were tested to failure. The four-point bending test 
results showed that the flexural strengths of the cured 
SAP-containing specimens were higher than those of 
the non-containing ones. The contribution of SAPs to 
the flexural strengths of the specimens were more 
profound for the water-cured samples [35].  

Snoeck et al. used cross-linked polyacrylate 
potassium salt as SAP material (1%, 2%, and 4% by 
weight of the cement) [36]. The other ingredients of the 
cementitious mixture were ordinary Portland cement, 
fly ash, silica sand, a polycarboxylate superplasticizer, 
and PVA fibers (2% by volume). The samples were 
deformed 28 days after casting by applying flexural 
stress on a four-point bending test equipment up to 7 
mm vertical displacement, where the PVA fibers 
reached their maximum strain. The first-cracking 
strength of the sample having 1% SAP gave similar 
results with the reference sample having no SAP. 
Whereas the increasing amount of SAP in the mixture 
had adverse effects on the flexural strength of the 

samples due to a decrease of the surface area. The 
cracked specimens were cured at three different 
conditions for 28 days: exposing to wet/dry cycles, 
storing in air at relative humidity of 60% or 90%. When 
the samples were subjected to aqueous environment 
during wet/dry cycles, SAP-containing samples 
demonstrated better self-healing ability than the 
reference sample without SAP. Besides, the degree of 
self-healing in terms of regain in peak strength 
increased as the content of the SAP was increased and 
reached up to 120% for the samples having 4% SAP. 
The enhanced self-healing was attributed to internal 
curing due to further hydration and precipitation of 
CaCO3. The precipitation of CaCO3 was facilitated by 
PVA microfibers and cracks with up to 138 micrometer 
width were closed completely. Furthermore, exposure 
to an environment with relative humidity of 90% and 
60% resulted in self-healing of SAP-containing 
samples. Whereas the reference specimens didn’t 
show any self-healing in humid environments.  

3. AUTONOMOUS HEALING APPROACHES  

Autonomous self-healing approaches require 
addition of additives and use of specific techniques to 
transfer them into cementitious mixture.  

3.1. Encapsulation 

Encapsulation is one the most used method to 
transfer healing agents into the concrete matrix [37]. 
There are some basic requirements for the capsule 
materials and healing agents. The shell of the capsules 
should be compatible with the chemicals inside the 
capsules and with cementitious mixture and withstand 
external mechanical effects during concrete 
preparation and casting [38, 39]. When concrete was 
exposed to crack generating flexural or compressional 
stress, the capsules should be broken, and the healing 
material should be released into the cracks. The 
healing agents in the capsules should have adequate 
viscosity to allow their penetration through the cracks 
and to prevent their leakage from the concrete during 
curing [40, 41]. The efficiency of encapsulation healing 
mechanism depends on the capsule diameter, shell 
thickness, and surface texture [42].  

The use of encapsulation method for self-healing of 
concrete was reported by Carolyn Dry in 1994 [43]. In 
this study, methyl methacrylate monomer in hollow 
porous polypropylene capsules was used as the 
healing agent. The monomer was released into the 
voids and cracks upon slight heating of concrete. The 
heat was increased, and methyl methacrylate 
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polymerized, resulting in the increased flexural strength 
of the concrete. Li et al. [25] and Joseph et al. [42] 
employed cyanoacrylate adhesive as the healing agent 
and glass fibers and reservoirs, respectively, for the 
encapsulation purposes. Van Tittelboom et al. [44] and 
Karaiskos et al. [45] employed polyurethane-based 
healing material and glass or ceramic cylindrical 
capsules.  

The composition and shape of the capsule is very 
important. The capsules with too thick and flexible walls 
may not break when some cracks develop around 
them. On the other hand, thin walls or ones made from 
fragile materials may rupture while preparing the 
cementitious mixture before the formation of cracks. 
White et al. prepared urea-formaldehyde capsules filled 
with dicyclopentadiene (DCPD) monomer via standard 
microencapsulation techniques [46]. The cementitious 
mixture contained Grubbs’ catalyst which shows high 
metathesis activity. Besides, it has high tolerance 
towards a wide range of functional groups as well as 
oxygen and water [47–49]. The shells of the capsules 
provided a protective barrier between the Grubb’s 
catalyst and the monomer during the preparation of the 
composite. 

Dong et al. [50] developed a model work to simulate 
effect of shell thickness on the release rate of the 
microcapsules. The microcapsules contained sodium 
monofluorophosphate and microcrystalline cellulose 
were mixed into Polysorbate 80. The microspheres 
were prepared via extrusion- spheronization method. 
Then, polystyrene microcapsules with different 
thicknesses were formed around the microspheres by 
spray drying. The authors used Ca(OH)2 solutions at 
different pH levels to simulate a cementitious 
environment. They reported that the microcapsules are 
promising for achieving smart release control in 
alkaline media. Mostavi et al. produced microcapsules 
with double shell layers using polyurethane and 
poly(urea-formaldehyde) resins to prevent 
encapsulation failures during concrete mixing. Inside 
the shells, sodium silicate was contained as the healing 
material [51].  

3.2. Vascular Mechanism 

Vascular approach is another elegant method 
developed for self-healing of concrete. In this method, 
very thin hollow tubes or tubular networks have been 
used to transfer healing materials to the vicinity of 
cracks, like vascular system in the human body [52, 
53]. Since they are provided from an external system 

by human intervention, multiple healing agents can 
practically be used [43, 52]. The vascular approach 
was first proposed by Dry in 1994 [43]. Polypropylene 
fiber tubes had been installed in the concrete before it 
was hardened. Then, cracks were developed 
intentionally, and methyl methacrylate monomer was 
drawn into the tubes, therefore into the concrete, by a 
vacuum system. Then, concrete was heated mildly and 
the wax around the tubes is melted, letting the 
monomer to diffuse into the cracked concrete. Finally, 
the temperature was increased to polymerize the 
monomer. The method reported by Nishiwaki et al. 
does not require human intervention [54]. This 
approach included the use of RuO2-containing sintered 
electrically conductive paste and organic film pipe with 
healing agent inside. When a crack developed by an 
applied stress, the conductive material near the crack 
was deformed and electrical conductivity was reduced. 
Then, electrical resistivity was increased and 
temperature around the crack was risen depending on 
the magnitude of the injected current. When the 
organic film pipe was heated, the healing material was 
released to the cementitious mixture.  

4. CONCLUSION 

The self-healing of the cementitious matrix is a very 
complex phenomenon, involving chemical and physical 
processes. Healing of concrete occurs via combination 
of various pathways. The hydration of un-hydrated 
materials, increase in their volumes and then make 
bonding with the crack walls, reducing the void space 
and thus water permeability. The healing efficiency of 
the methods depends on both chemical and physical 
interaction between cementitious matrix and the 
healing agents. Mechanical tests are not efficient 
enough to understand what is happening inside the 
cracks. Therefore, reproducibility of the applied healing 
techniques is rather limited.  
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