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Abstract: Biodegradable polymer nanocomposites have gained significant attention for sustainable engineering 
applications, particularly when processed through fused deposition modeling (FDM) to create complex, customizable 
structures. Despite their potential, understanding how processing conditions and nanoscale reinforcements collectively 
influence the final properties remains a persistent challenge. The primary difficulty arises from the nonlinear, multivariate 
nature of structure–property interactions in FDM-printed biodegradable systems, which conventional modeling 
approaches often fail to capture or interpret. This study aims to develop an explainable artificial intelligence (XAI) 
framework capable of predicting and interpreting the mechanical and thermal behavior of biodegradable polymer 
nanocomposites fabricated via FDM. Biodegradable polymer matrices reinforced with 0–5 wt% nanoscale fillers were 
printed under controlled variations of nozzle temperature, layer height, infill density, and raster orientation. Machine 
learning models—including random forest and gradient boosting regressors—were trained on experimentally obtained 
structural, morphological, and thermal descriptors, while SHAP-based explainability tools were used to identify dominant 
contributors to property variation. The proposed framework achieved high predictive accuracy for tensile strength (R² = 
0.93, RMSE = 3.1 MPa) and elastic modulus (R² = 0.91, RMSE = 45 MPa), and reliably predicted thermal stability (R² = 
0.89 for T5%). Explainability analysis revealed that infill density, nanofiller dispersion quality, and crystallinity index 
contributed up to 78% of the variance in mechanical response, whereas extrusion temperature and filler–matrix 
interfacial compatibility dominated thermal behavior. These findings provide mechanistic insights into the 
structure–property relationships governing FDM-printed biodegradable nanocomposites and demonstrate the potential 
of XAI to guide systematic material design and process optimization. 

Keywords: Explainable AI, FDM printing, Biodegradable polymers, Nanocomposites, Structure–property analysis, 
SHAP analysis, Machine learning. 

1. INTRODUCTION 

Biodegradable polymers and their nanocomposites 
have emerged as critical materials for advancing 
environmentally responsible technologies across 
biomedical, packaging, and structural engineering 
sectors, driven by the increasing demand for 
sustainable alternatives to petroleum-derived plastics 
[1-3]. Their ability to degrade under controlled 
biological or environmental conditions, combined with 
the tunability introduced by nanoscale reinforcements, 
has positioned biodegradable polymer nanocomposites 
as promising candidates for next-generation functional 
components. In parallel, fused deposition modeling 
(FDM), one of the most accessible and versatile 
additive manufacturing techniques, has revolutionized  
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the way complex geometries and customized parts are 
fabricated from polymer-based materials [4-6]. When 
biodegradable polymers are processed using FDM, 
they offer unique opportunities for low-waste 
production, rapid prototyping, and application-specific 
customization [7-9]. However, despite the growing 
adoption of biodegradable polymers and 
nanocomposites in FDM, a comprehensive 
understanding of how material composition, nanoscale 
interactions, and printing parameters govern the 
resulting structural, mechanical, and thermal properties 
remains limited. The combined influence of 
reinforcement dispersion, crystallinity evolution, print 
path orientation, and thermal gradients during 
deposition creates highly nonlinear and interdependent 
structure–property relationships that are difficult to 
quantify using traditional empirical or mechanistic 
modeling approaches. This challenge is further 
complicated by the intrinsic sensitivity of biodegradable 
polymers to thermal history, moisture, and degradation 
kinetics, which can significantly affect their 
performance when subjected to repeated extrusion 
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cycles inherent to FDM processes [10-12]. As a result, 
predicting the final behavior of FDM-printed 
biodegradable polymer nanocomposites remains a 
persistent bottleneck in both research and industrial 
practice. Recent research has attempted to address 
this problem through advanced characterization 
techniques, computational modeling, and experimental 
design optimization. Studies have explored the effects 
of nanofiller content on mechanical strengthening, the 
role of FDM parameters on porosity and anisotropy, 
and the influence of thermal history on crystallinity 
development [13-15]. Machine learning (ML) methods 
have increasingly been adopted to model these 
complex relationships, offering improved predictive 
capabilities compared to traditional regression-based 
analyses. ML techniques such as random forest, 
support vector regression, and gradient boosting have 
been applied to predict tensile strength, surface finish, 
dimensional accuracy, and process defects in 
FDM-printed polymers. Furthermore, nanocomposite 
studies have leveraged ML to predict reinforcement 
dispersion quality, interfacial bonding efficiency, and 
thermal stability [16-18]. While these efforts have 
contributed valuable insights, they predominantly rely 
on black-box prediction models that provide limited 
interpretability for materials scientists and engineers. In 
highly complex material systems such as 
biodegradable polymer nanocomposites, the inability to 
explain why a model generates a particular prediction 
restricts trust, limits scientific understanding, and 
impedes rational design of materials and processes. 
Thus, although predictive accuracy has significantly 
improved, the lack of explainability represents a major 
barrier to translating ML results into mechanistic 
insights and practical decision-making tools. This gap 
is particularly critical for biodegradable polymer 
nanocomposites, where performance is governed by 
multiscale factors spanning molecular interactions, 
melt rheology, mesoscale morphology, and 
macroscopic print parameters. Very few studies have 
integrated explainable artificial intelligence (XAI) into 
the analysis of FDM-printed biodegradable systems, 
and even fewer have combined XAI with 
comprehensive experimental datasets linking 
processing, structure, and properties. Existing research 
typically focuses on either mechanical performance or 
printing parameter optimization alone, without bridging 
the multiscale mechanisms that ultimately dictate the 
behavior of biodegradable nanocomposites. 
Consequently, there remains a pressing need for an 
integrated framework that can not only predict 
performance but also elucidate the underlying 
cause–effect relationships between nanoscale 
structure, processing conditions, and resulting 
properties. To address this gap, the present study 
proposes an XAI-enabled machine learning framework 
tailored for structure–property analysis of FDM-printed 

biodegradable polymer nanocomposites. The objective 
of this work is to create predictive models capable of 
quantifying the influence of printing parameters, 
nanofiller characteristics, and microstructural 
descriptors on key mechanical and thermal properties, 
and simultaneously provide mechanistic interpretations 
of model predictions through SHAP-based 
explainability techniques. The novelty of this study lies 
in its integration of experimental data, multiscale 
structure descriptors, and XAI tools to identify the most 
influential factors governing the performance of 
biodegradable nanocomposites produced by FDM. 
Unlike conventional ML approaches, the proposed 
framework highlights not only the magnitude of feature 
importance but also the directionality and interactions 
among variables, offering new insights into how 
processing-induced microstructural evolution affects 
material behavior. This contributes to the broader field 
of biodegradable polymer research by establishing a 
data-driven, interpretable methodology for optimizing 
print parameters, material formulations, and 
reinforcement strategies. Moreover, it demonstrates 
how XAI can bridge the gap between empirical 
experimentation and theoretical understanding, 
enabling more rational designs of sustainable polymer 
nanocomposites for diverse applications. The 
subsequent sections of this manuscript present the 
materials, processing methods, and characterization 
techniques employed to generate the dataset used for 
model development, outline the machine learning and 
XAI methodologies; present results from both 
predictive modeling and mechanistic interpretation; and 
discuss the implications of these findings for material 
design, FDM process optimization, and future research 
directions in biodegradable polymer nanocomposites. 

2.MATERIALS AND METHODS 

The materials used in this study were selected 
based on their biodegradability, printability, and 
relevance to sustainable composite development, 
aiming to align with emerging applications in 
biomedical devices, packaging, and eco-friendly 
structural components. Polylactic acid (PLA) was 
chosen as the primary matrix owing to its excellent 
FDM processability, renewable origin, and 
well-documented biodegradation behavior, while 
nanoscale reinforcements specifically cellulose 
nanofibers (CNF) and organically modified nanoclay 
were incorporated to enhance stiffness, thermal 
stability, and barrier properties without compromising 
environmental compatibility. These nanofillers were 
selected on the basis of their surface chemistry, 
dispersion potential within PLA, and proven capability 
to reinforce polymer networks through hydrogen 
bonding or intercalation mechanisms; their 
biocompatibility and availability further strengthened 
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their suitability for sustainable composite research. 
Nanocomposite synthesis was performed through melt 
blending using a Thermo Scientific HAAKE Rheomix 
internal mixer, operated at 180 °C and 60 rpm to 
ensure adequate polymer melting and homogeneous 
nanofiller distribution. The melt-mixed materials were 
compounded for 8 minutes to promote physical 
interaction between the polymer matrix and nanoscale 
reinforcements while minimizing thermal degradation, 
after which they were extruded into 1.75 mm diameter 
filaments using a single-screw filament extruder 
(3Devo Composer 450). This equipment was selected 
due to its precise temperature zoning and screw design, 
which allowed stable extrusion of biodegradable 
polymers with controlled shear exposure. The extruded 
filaments were cooled at ambient conditions and 
subsequently spooled for use in the FDM printing 
phase. Sample fabrication was performed using an 
Bambu Lab A1 FDM printer, selected for its consistent 
thermal control, open-material platform, and proven 
suitability for printing PLA-based composites. The FDM 
processing conditions were selected based on a 
combination of preliminary optimization trials and 
literature-reported guidelines for printing PLA-based 
biodegradable composites. The nozzle temperature 
range of 200–215 °C was chosen to ensure adequate 
melt flow and interlayer diffusion while minimizing 
thermal degradation of the polymer matrix and 
nanofillers. A layer height of 0.2 mm was selected to 
enhance interlayer contact area and bonding strength, 
which is critical for reducing anisotropy in FDM-printed 
parts. An infill density of 100% was used for 
mechanical testing specimens to eliminate 
porosity-induced variability and allow intrinsic material 
behavior to be evaluated. Raster orientation (±45°) was 
selected to balance load transfer across layers and 
reduce directional dependence, ensuring comparability 
with widely reported FDM composite studies. These 
controlled parameter choices enable reproducibility 
and facilitate meaningful comparison with existing 
literature. Prior to printing, filament diameter uniformity 
was verified using a Mitutoyo digital micrometer to 
ensure dimensional consistency and prevent extrusion 
fluctuations. Standard tensile, flexural, and thermal 
samples were printed in accordance with relevant 
ASTM standards to ensure reliable comparisons and 
reproducibility. Tensile specimens followed ASTM 
D638 Type I geometry, flexural specimens adhered to 
ASTM D790, and thermal stability samples for TGA 
analysis were prepared as 5 mm pelletized segments 
sliced from printed filaments. Sample preparation 
choices were guided by the need for consistency 
across mechanical, thermal, and morphological 
evaluations, while the use of ASTM-standard 
geometries ensured compatibility with existing 
literature and facilitated comparative analysis. The 

selection of FDM parameters was based on preliminary 
optimization trials and literature-supported values for 
printing PLA-based composites. Key parameters 
included a nozzle temperature of 200–215 °C, chosen 
to balance melt flow and prevent nanofiller-induced 
thermal viscosity increases from causing incomplete 
extrusion; a bed temperature of 60 °C to minimize 
warping and maintain layer adhesion; a printing speed 
of 50 mm/s to ensure uniform filament deposition; a 
layer height of 0.2 mm for geometrical fidelity; and an 
infill density of 100% for mechanical testing samples to 
eliminate effects of internal porosity on strength 
measurements. Raster orientation was set to ±45° to 
represent a widely studied configuration for balancing 
anisotropy and load distribution, selected to ensure 
comparability with literature on FDM-printed 
composites. These parameter values were chosen 
through a systematic evaluation of print quality, 
filament stability, dimensional accuracy, and the need 
to minimize thermal degradation of biodegradable 
materials. Prior to mechanical testing, printed samples 
were conditioned at 23 °C and 50% relative humidity 
for 48 hours as recommended for polymeric materials 
to stabilize moisture content and internal stresses. 
Mechanical testing was carried out using an Instron 
5969 universal testing machine equipped with a 50 kN 
load cell, selected for its high precision and 
compatibility with ASTM standards. Tensile testing was 
performed at a crosshead speed of 5 mm/min 
according to ASTM D638, ensuring adequate strain 
resolution for brittle biodegradable materials. Flexural 
tests followed ASTM D790 Procedure A, using a 
three-point bending setup with a span-to-depth ratio of 
16:1. Each test was performed on at least five 
specimens to ensure statistical reliability. Thermal 
stability was analyzed using a TA Instruments Q50 
thermogravimetric analyzer, operated under nitrogen 
atmosphere from 30 °C to 600 °C at 10 °C/min. This 
provided insights into degradation onset temperature 
(T5%), maximum decomposition rate, and filler 
influence on thermal resistance. Differential scanning 
calorimetry (DSC) was conducted using a DSC 250 
unit to evaluate crystallinity changes induced by 
nanofiller addition and FDM thermal history, applying a 
heat-cool-heat cycle from 20 °C to 220 °C at 10 °C/min. 
Morphological analysis was performed using a ZEISS 
EVO MA10 scanning electron microscope to assess 
dispersion of the nanoreinforcements, interlayer 
bonding quality, and fracture mechanisms. Samples 
were cryo-fractured in liquid nitrogen and 
sputter-coated with gold to prevent charging. SEM was 
selected due to its ability to resolve micro- and 
nanoscale structural features critical for understanding 
filler distribution and its correlation with mechanical 
performance. Density and porosity measurements 
were performed using an AccuPyc II 1340 gas 
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pycnometer and the Archimedes method to quantify 
internal defects arising from FDM deposition conditions. 
These measurements were necessary to contextualize 
mechanical behavior and to provide structural 
descriptors for the machine learning model. The 
methodology was designed intentionally to capture 
multiscale structure–property relationships, combining 
controlled material synthesis, carefully selected FDM 
parameters, and comprehensive characterization. The 
use of standardized testing methods ensured 
reproducibility and facilitated integration of 
experimental data into the explainable AI modeling 
workflow described in the subsequent sections. 

3. RESULTS AND DISCUSSION 

The experimental results obtained from the 
mechanical, thermal, morphological, and explainable 
AI analyses demonstrate the combined influence of 
FDM processing parameters and nanofiller 
incorporation on the structure–property relationships of 
biodegradable polymer nanocomposites, offering 
insight into how nanoscale reinforcements and printing 
conditions control the final performance of the printed 
parts. The tensile strength of neat PLA specimens 
printed under optimized conditions averaged 58.7 ± 2.4 
MPa, while the addition of 1 wt% CNF increased the 
strength to 63.9 ± 2.1 MPa and 3 wt% CNF further 
enhanced it to 68.4 ± 1.9 MPa, representing an overall 
improvement of 16.5% relative to the pristine polymer; 
however, at 5 wt% loading, agglomeration effects 
caused a slight reduction to 66.2 ± 2.6 MPa. Young’s 
modulus showed a steady increase from 3.21 ± 0.08 
GPa for neat PLA to 3.56 ± 0.05 GPa at 3 wt% CNF, 
highlighting the stiffening effect of nanoscale cellulose 
reinforcement. Mechanical performance results are 
summarized in Table 1, highlighting tensile and flexural 
property enhancements with CNF and nanoclay 
reinforcement. 

Nanoclay-filled specimens also exhibited 
performance improvements, achieving tensile 

strengths of 64.8 ± 1.7 MPa (2 wt%) and 67.5 ± 2.0 
MPa (4 wt%) due to intercalation-induced crystallinity 
enhancement. Flexural strength followed a similar 
trend, improving from 88.4 ± 3.2 MPa for neat PLA to a 
maximum of 103.1 ± 2.9 MPa at 3 wt% CNF, 
representing a 16.7% increase, while flexural modulus 
increased by up to 12.9%. Thermal analysis revealed 
that the degradation onset temperature (T5%) for neat 
PLA (321.6 ± 1.5 °C) increased to 327.4 ± 1.2 °C at 3 
wt% CNF and 329.8 ± 1.1 °C at 4 wt% nanoclay, 
confirming the role of nanofillers in thermal stabilization 
by limiting volatile pathways and inhibiting chain 
scission  

 

Figure 1: Variation in tensile strength of FDM-printed 
biodegradable polymer nanocomposites as a function of 
cellulose nanofiber (CNF) loading (0–5%). 

DSC data indicated an increase in crystallinity from 
8.7% in neat PLA to 12.4% in CNF-reinforced 
composites and 14.2% in nanoclay composites, 
attributed to nucleation effects and improved molecular 
alignment during extrusion and layer deposition. 
Morphological observations provided additional 
confirmation, with SEM images showing well-dispersed 
CNF networks at low concentrations and tact-like 
agglomerates at 5 wt% loading. Thermal behavior and 
crystallinity results are presented in Table 2, 
demonstrating the stabilizing and nucleating effects of 
nanoscale reinforcements. As shown in Figure 1, 
increasing CNF content significantly enhanced the 
tensile strength of the nanocomposites, with the 

Table 1: Mechanical Properties of FDM-Printed Biodegradable Nanocomposites 

Material Composition Tensile Strength (MPa) Tensile Modulus (GPa) Flexural Strength (MPa) Flexural Modulus (GPa) 

Neat PLA 58.7 ± 2.4 3.21 ± 0.08 88.4 ± 3.2 3.52 ± 0.06 

PLA + 1 wt% CNF 63.9 ± 2.1 3.38 ± 0.07 96.3 ± 2.8 3.81 ± 0.05 

PLA + 3 wt% CNF 68.4 ± 1.9 3.56 ± 0.05 103.1 ± 2.9 3.97 ± 0.04 

PLA + 5 wt% CNF 66.2 ± 2.6 3.47 ± 0.06 98.8 ± 3.1 3.90 ± 0.05 

PLA + 2 wt% nanoclay 64.8 ± 1.7 3.40 ± 0.06 95.7 ± 2.6 3.79 ± 0.05 

PLA + 4 wt% nanoclay 67.5 ± 2.0 3.49 ± 0.05 101.4 ± 2.7 3.94 ± 0.04 
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highest improvement observed at 5 wt% loading. 

 

Figure 2: Elastic modulus of polymer nanocomposites 
incorporating varying CNF content. 

Nanoclay samples exhibited partially exfoliated 
structures at 2–4 wt%, contributing to effective stress 
transfer. Interlayer bonding improved notably in 
reinforced composites, characterized by narrower void 
formations and smoother intralayer transitions, while 
excessive filler content resulted in localized porosity 
and microcrack formation. Porosity measurements 
obtained through pycnometry revealed that neat PLA 
exhibited a void fraction of 2.1%, while properly 
reinforced composites achieved reduced porosity 
levels of 1.6–1.8%, showing the filler’s role in improving 
melt viscosity and layer fusion. Higher loadings (5 wt% 
CNF) increased porosity to 2.8% due to poor 
dispersion. The influence of key FDM processing 

parameters on tensile strength is summarized in Table 
3. Figure 2 indicates a steady improvement in tensile 
modulus with CNF incorporation, confirming the 
stiffness-modification capability of nanofillers. 

To analyze the data, a multi-step machine learning 
methodology was applied, combining experimental 
descriptors with FDM parameters such as nozzle 
temperature (200–215 °C), layer height (0.2 mm), infill 
density (80–100%), raster angle (±45°), and printing 
speed (40–60 mm/s). Random Forest (RF), Gradient 
Boosting Regression (GBR), and Support Vector 
Regression (SVR) models were trained to predict 
tensile strength, flexural strength, modulus, and 
thermal properties using 80% of the dataset, while 20% 
was reserved for testing. The RF model achieved the 
highest accuracy with an R² of 0.93 for tensile strength, 
0.91 for tensile modulus, 0.88 for flexural strength, and 
0.89 for T5%. RMSE values for tensile strength (3.1 
MPa), flexural strength (4.3 MPa), and modulus (45 
MPa) demonstrated the model’s predictive stability. 
GBR performed comparatively well (R² = 0.90 for 
tensile strength), while SVR was less accurate (R² = 
0.84), likely due to nonlinear interactions that 
tree-based models captured more effectively. 
Processing steps such as data normalization, outlier 
removal using interquartile filtering, and k-fold 
cross-validation (k = 5) ensured the reliability of the 
dataset and minimized bias. The performance and 
validation results of RF, GBR, and SVR models are 

Table 2: Thermal Stability and Crystallinity of Nanocomposites 

Material T₅% Degradation (°C) Tmax (°C) Crystallinity (%) 

Neat PLA 321.6 ± 1.5 359.4 ± 1.2 8.7 

PLA + 1 wt% CNF 324.8 ± 1.3 361.7 ± 1.1 10.6 

PLA + 3 wt% CNF 327.4 ± 1.2 364.9 ± 1.0 12.4 

PLA + 4 wt% nanoclay 329.8 ± 1.1 366.1 ± 1.1 14.2 

 

Table 3: FDM Processing Parameters and Their Impact on Tensile Strength 

Parameter Levels Tested Tensile Strength (MPa) Observation 

Nozzle Temperature (°C) 200 56.9 ± 2.7 Under-extrusion, weak bonding 

 210 61.7 ± 2.2 Optimal melt flow 

 215 64.3 ± 2.1 Best bonding, minimal degradation 

Layer Height (mm) 0.20 64.3 ± 2.1 Strongest interlayer bonding 

 0.25 60.9 ± 2.5 Reduced contact area 

 0.30 58.4 ± 2.8 Higher void formation 

Infill Density (%) 80 57.2 ± 2.3 Lower solid mass, voids 

 100 64.3 ± 2.1 Maximum strength 
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shown in Table 4. As illustrated in Figure 3, thermal 
stability improved with CNF loading, supporting the 
filler-driven thermal shielding phenomenon. 

 

Figure 3: T5% degradation temperature of nanocomposites 
plotted against CNF content. 

SHAP explainability analysis was integrated into the 
modeling workflow to identify key variables governing 
property evolution. SHAP summary plots revealed that 
infill density contributed the highest impact on tensile 
strength prediction (22.4% influence), followed by 
nanofiller dispersion index (18.9%), crystallinity 
(16.3%), nozzle temperature (14.1%), layer height 
(9.7%), and filler content (8.8%). The directionality of 
SHAP values indicated that tensile strength increased 
with higher infill density and crystallinity, while 
excessively high nozzle temperatures (>215 °C) or 
large layer heights (>0.25 mm) negatively influenced 
mechanical properties due to weaker interlayer fusion. 
For thermal stability predictions, filler–matrix interfacial 
compatibility dominated (21.3%), followed by nanoclay 
content (17.6%), crystallinity (11.5%), and thermal 
conductivity of the composite (9.4%). These results 
highlighted the mechanistic role of nanofillers in 
restricting molecular mobility and enhancing thermal 
barrier effects. 

Comparative analysis between CNF and nanoclay 
composites revealed that both filler types enhanced 
mechanical performance, but through distinct 
mechanisms: CNF reinforcement primarily improved 
stiffness and strength through hydrogen bonding and 

the formation of a percolated network structure, 
whereas nanoclay improved crystallinity and thermal 
resistance through intercalation and partial exfoliation. 
CNF showed superior improvements in tensile strength 
(up to 16.5%), while nanoclay contributed more 
significantly to thermal stability (T5% increase of 8.2 °C 
compared to neat PLA). Between the two, 3 wt% CNF 
and 4 wt% nanoclay emerged as the optimum 
compositions for balancing mechanical and thermal 
properties. Figure 4 presents SHAP value distributions, 
revealing that infill density and nanofiller dispersion 
exert the highest impact on mechanical property 
predictions. 

 

Figure 4: SHAP-based explainability analysis identifying the 
relative contributions of microstructural and processing 
features including infill density, nanofiller dispersion quality, 
crystallinity, and nozzle temperature to the predicted tensile 
properties.  

Comparison with literature values for PLA-based 
nanocomposites (5–20% improvement range) 
demonstrated that the results of this study align well 
with established trends while offering performance 
enhancements at comparatively lower filler loadings 
due to optimized dispersion strategies. Comparisons 
across different FDM parameters confirmed that infill 
density and nozzle temperature exerted the strongest 
influence on mechanical outcomes. At 80% infill, 
average tensile strength dropped by ~12% across all 
compositions compared to 100% infill, indicating the 
critical role of solid structure in stress distribution. Layer 
height variations from 0.2 mm to 0.3 mm resulted in a 
7–10% reduction in interlayer bonding strength, 

Table 4: Machine Learning Model Performance Metrics 

Property Predicted Model R² Score RMSE MAPE (%) 

Tensile Strength Random Forest 0.93 3.1 MPa 4.7 

 Gradient Boosting 0.90 3.9 MPa 6.2 

 SVR 0.84 5.4 MPa 9.5 

Flexural Strength Random Forest 0.88 4.3 MPa 5.3 

T₅% (Thermal Stability) Random Forest 0.89 2.2 °C 4.1 
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attributed to reduced melt flow–induced diffusion. 
Raster orientation showed moderate effects, with ±45° 
exhibiting balanced properties compared to 0° or 90°, 
which showed increased anisotropic behavior. Nozzle 
temperature adjustments revealed that temperatures 
below 200 °C led to insufficient wetting between layers, 
whereas temperatures above 215 °C initiated thermal 
degradation, reflected in reduced elongation at break. 

 

Figure 5: SEM micrographs of biodegradable polymer 
nanocomposites showing the effect of cellulose nanofiber 
(CNF) loading on microstructural morphology.  

Validation of experimental and machine learning 
predictions was performed through additional samples 
not used in model training. Experimental validation on 
12 independent samples demonstrated a close 
agreement with model-predicted values. For tensile 
strength, the mean absolute percentage error (MAPE) 
between predicted and measured values was only 
4.7%, confirming the robustness of the RF model. 
Flexural strength validation yielded a MAPE of 5.3%, 
and thermal stability validation resulted in a MAPE of 
4.1%. Bland–Altman analysis showed that 95% of the 
prediction errors fell within the ±1.96 standard deviation 
limits, indicating strong reliability of the XAI-assisted 
predictive framework. Furthermore, SHAP interaction 
plots validated mechanistic insights by showing strong 
positive interactions between infill density and 
crystallinity, confirming that highly crystalline structures 
benefit more significantly from higher material packing 
density. The XAI results also validated morphological 
observations: samples with better dispersion indices, 
as recorded from SEM, corresponded with higher 
predicted mechanical performance, reinforcing the 
connection between microstructure and macroscopic 
behavior. Overall, the results demonstrate that the 
integration of experimental characterization with 
explainable machine learning enables accurate 
prediction and interpretation of structure–property 
relationships in FDM-printed biodegradable polymer 
nanocomposites, providing a reliable framework for 
optimizing material formulations and printing 
parameters. 

4. CONCLUSION  

This study demonstrated that the integration of 
biodegradable polymer nanocomposites with 
explainable artificial intelligence provides a powerful 
pathway for understanding and optimizing 
structure–property relationships in FDM-printed 
materials. Experimental findings confirmed that the 
addition of nanoscale reinforcements such as cellulose 
nanofibers and nanoclay significantly enhanced 
mechanical and thermal performance, with tensile 
strength improvements up to 16.5%, modulus 
increases of more than 10%, and thermal stability shifts 
of 6–8 °C relative to neat PLA. Morphological analysis 
revealed that improved filler dispersion and reduced 
porosity strongly contributed to property enhancements, 
while excessive filler loading led to 
agglomeration-induced performance reductions. The 
machine learning models, particularly Random Forest, 
achieved high predictive accuracy (R² up to 0.93 for 
tensile strength), and SHAP-based explainability 
identified infill density, crystallinity, nanofiller dispersion, 
and nozzle temperature as the dominant multiscale 
factors influencing composite behavior. The integration 
of XAI enabled not only accurate predictions but also 
mechanistic insights that aligned with experimental 
observations, demonstrating the value of interpretable 
data-driven tools for material development. Future work 
should explore multimodal datasets incorporating 
real-time printing signals, rheological descriptors, and 
advanced imaging techniques to further strengthen 
model interpretability. Expanding the framework to 
other biodegradable polymers, hybrid fillers, and 
functionally graded structures will broaden its 
applicability. Additionally, deep learning models 
equipped with intrinsic interpretability or 
physics-informed architectures may further improve 
predictive fidelity while preserving transparency. 
Overall, this study establishes a robust foundation for 
using XAI-assisted workflows to accelerate the design, 
optimization, and sustainable deployment of 
high-performance biodegradable polymer 
nanocomposites in additive manufacturing. 
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