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Abstract: Biodegradable polymer nanocomposites have gained significant attention for sustainable engineering
applications, particularly when processed through fused deposition modeling (FDM) to create complex, customizable
structures. Despite their potential, understanding how processing conditions and nanoscale reinforcements collectively
influence the final properties remains a persistent challenge. The primary difficulty arises from the nonlinear, multivariate
nature of structure—property interactions in FDM-printed biodegradable systems, which conventional modeling
approaches often fail to capture or interpret. This study aims to develop an explainable artificial intelligence (XAl)
framework capable of predicting and interpreting the mechanical and thermal behavior of biodegradable polymer
nanocomposites fabricated via FDM. Biodegradable polymer matrices reinforced with 0-5 wt% nanoscale fillers were
printed under controlled variations of nozzle temperature, layer height, infill density, and raster orientation. Machine
learning models—including random forest and gradient boosting regressors—were trained on experimentally obtained
structural, morphological, and thermal descriptors, while SHAP-based explainability tools were used to identify dominant
contributors to property variation. The proposed framework achieved high predictive accuracy for tensile strength (R? =
0.93, RMSE = 3.1 MPa) and elastic modulus (R? = 0.91, RMSE = 45 MPa), and reliably predicted thermal stability (R* =
0.89 for Ts%). Explainability analysis revealed that infill density, nanofiller dispersion quality, and crystallinity index
contributed up to 78% of the variance in mechanical response, whereas extrusion temperature and filler—-matrix
interfacial compatibility dominated thermal behavior. These findings provide mechanistic insights into the
structure—property relationships governing FDM-printed biodegradable nanocomposites and demonstrate the potential
of XAl to guide systematic material design and process optimization.

Keywords: Explainable Al, FDM printing, Biodegradable polymers, Nanocomposites, Structure—property analysis,
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1. INTRODUCTION the way complex geometries and customized parts are
fabricated from polymer-based materials [4-6]. When
biodegradable polymers are processed using FDM,
they offer unique opportunities for low-waste
production, rapid prototyping, and application-specific
customization [7-9]. However, despite the growing
adoption of biodegradable polymers and
nanocomposites in FDM, a comprehensive
understanding of how material composition, nanoscale
interactions, and printing parameters govern the
resulting structural, mechanical, and thermal properties
remains limited. The combined influence of
reinforcement dispersion, crystallinity evolution, print
path orientation, and thermal gradients during
deposition creates highly nonlinear and interdependent
structure—property relationships that are difficult to
quantify using traditional empirical or mechanistic

Biodegradable polymers and their nanocomposites
have emerged as critical materials for advancing
environmentally responsible technologies across
biomedical, packaging, and structural engineering
sectors, driven by the increasing demand for
sustainable alternatives to petroleum-derived plastics
[1-3]. Their ability to degrade under controlled
biological or environmental conditions, combined with
the tunability introduced by nanoscale reinforcements,
has positioned biodegradable polymer nanocomposites
as promising candidates for next-generation functional
components. In parallel, fused deposition modeling
(FDM), one of the most accessible and versatile
additive manufacturing techniques, has revolutionized

modeling approaches. This challenge is further
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cycles inherent to FDM processes [10-12]. As a result,
predicting the final behavior of FDM-printed
biodegradable polymer nanocomposites remains a
persistent bottleneck in both research and industrial
practice. Recent research has attempted to address
this problem through advanced characterization
techniques, computational modeling, and experimental
design optimization. Studies have explored the effects
of nanofiller content on mechanical strengthening, the
role of FDM parameters on porosity and anisotropy,
and the influence of thermal history on crystallinity
development [13-15]. Machine learning (ML) methods
have increasingly been adopted to model these
complex relationships, offering improved predictive
capabilities compared to traditional regression-based
analyses. ML techniques such as random forest,
support vector regression, and gradient boosting have
been applied to predict tensile strength, surface finish,
dimensional accuracy, and process defects in
FDM-printed polymers. Furthermore, nanocomposite
studies have leveraged ML to predict reinforcement
dispersion quality, interfacial bonding efficiency, and
thermal stability [16-18]. While these efforts have
contributed valuable insights, they predominantly rely
on black-box prediction models that provide limited
interpretability for materials scientists and engineers. In
highly ~complex material systems such as
biodegradable polymer nanocomposites, the inability to
explain why a model generates a particular prediction
restricts trust, limits scientific understanding, and
impedes rational design of materials and processes.
Thus, although predictive accuracy has significantly
improved, the lack of explainability represents a major
barrier to translating ML results into mechanistic
insights and practical decision-making tools. This gap
is particularly critical for biodegradable polymer
nanocomposites, where performance is governed by
multiscale factors spanning molecular interactions,
melt  rheology, mesoscale morphology, and
macroscopic print parameters. Very few studies have
integrated explainable artificial intelligence (XAl) into
the analysis of FDM-printed biodegradable systems,
and even fewer have combined XAl with
comprehensive experimental datasets linking
processing, structure, and properties. Existing research
typically focuses on either mechanical performance or
printing parameter optimization alone, without bridging
the multiscale mechanisms that ultimately dictate the
behavior of biodegradable nanocomposites.
Consequently, there remains a pressing need for an
integrated framework that can not only predict
performance but also elucidate the underlying
cause—effect relationships between nanoscale
structure, processing conditions, and resulting
properties. To address this gap, the present study
proposes an XAl-enabled machine learning framework
tailored for structure—property analysis of FDM-printed

biodegradable polymer nanocomposites. The objective
of this work is to create predictive models capable of
quantifying the influence of printing parameters,
nanofiller characteristics, and microstructural
descriptors on key mechanical and thermal properties,
and simultaneously provide mechanistic interpretations
of model predictions through  SHAP-based
explainability techniques. The novelty of this study lies
in its integration of experimental data, multiscale
structure descriptors, and XAl tools to identify the most
influential factors governing the performance of
biodegradable nanocomposites produced by FDM.
Unlike conventional ML approaches, the proposed
framework highlights not only the magnitude of feature
importance but also the directionality and interactions
among variables, offering new insights into how
processing-induced microstructural evolution affects
material behavior. This contributes to the broader field
of biodegradable polymer research by establishing a
data-driven, interpretable methodology for optimizing
print parameters, material formulations, and
reinforcement strategies. Moreover, it demonstrates
how XAl can bridge the gap between empirical
experimentation and theoretical understanding,
enabling more rational designs of sustainable polymer
nanocomposites for diverse applications. The
subsequent sections of this manuscript present the
materials, processing methods, and characterization
techniques employed to generate the dataset used for
model development, outline the machine learning and
XAl methodologies; present results from both
predictive modeling and mechanistic interpretation; and
discuss the implications of these findings for material
design, FDM process optimization, and future research
directions in biodegradable polymer nanocomposites.

2.MATERIALS AND METHODS

The materials used in this study were selected
based on their biodegradability, printability, and
relevance to sustainable composite development,

aiming to align with emerging applications in
biomedical devices, packaging, and eco-friendly
structural components. Polylactic acid (PLA) was

chosen as the primary matrix owing to its excellent
FDM processability, renewable  origin, and
well-documented biodegradation behavior, while
nanoscale reinforcements specifically cellulose
nanofibers (CNF) and organically modified nanoclay
were incorporated to enhance stiffness, thermal
stability, and barrier properties without compromising
environmental compatibility. These nanofillers were
selected on the basis of their surface chemistry,
dispersion potential within PLA, and proven capability
to reinforce polymer networks through hydrogen
bonding or intercalation mechanisms;  their
biocompatibility and availability further strengthened
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their suitability for sustainable composite research.
Nanocomposite synthesis was performed through melt
blending using a Thermo Scientific HAAKE Rheomix
internal mixer, operated at 180 °C and 60 rpm to
ensure adequate polymer melting and homogeneous
nanofiller distribution. The melt-mixed materials were
compounded for 8 minutes to promote physical
interaction between the polymer matrix and nanoscale
reinforcements while minimizing thermal degradation,
after which they were extruded into 1.75 mm diameter
filaments using a single-screw filament extruder
(3Devo Composer 450). This equipment was selected
due to its precise temperature zoning and screw design,
which allowed stable extrusion of biodegradable
polymers with controlled shear exposure. The extruded
filaments were cooled at ambient conditions and
subsequently spooled for use in the FDM printing
phase. Sample fabrication was performed using an
Bambu Lab A1 FDM printer, selected for its consistent
thermal control, open-material platform, and proven
suitability for printing PLA-based composites. The FDM
processing conditions were selected based on a
combination of preliminary optimization trials and
literature-reported guidelines for printing PLA-based
biodegradable composites. The nozzle temperature
range of 200-215 °C was chosen to ensure adequate
melt flow and interlayer diffusion while minimizing
thermal degradation of the polymer matrix and
nanofillers. A layer height of 0.2 mm was selected to
enhance interlayer contact area and bonding strength,
which is critical for reducing anisotropy in FDM-printed
parts. An infill density of 100% was used for
mechanical testing specimens to eliminate
porosity-induced variability and allow intrinsic material
behavior to be evaluated. Raster orientation (+45°) was
selected to balance load transfer across layers and
reduce directional dependence, ensuring comparability
with widely reported FDM composite studies. These
controlled parameter choices enable reproducibility
and facilitate meaningful comparison with existing
literature. Prior to printing, filament diameter uniformity
was verified using a Mitutoyo digital micrometer to
ensure dimensional consistency and prevent extrusion
fluctuations. Standard tensile, flexural, and thermal
samples were printed in accordance with relevant
ASTM standards to ensure reliable comparisons and
reproducibility. Tensile specimens followed ASTM
D638 Type | geometry, flexural specimens adhered to
ASTM D790, and thermal stability samples for TGA
analysis were prepared as 5 mm pelletized segments
sliced from printed filaments. Sample preparation
choices were guided by the need for consistency

across mechanical, thermal, and morphological
evaluations, while the use of ASTM-standard
geometries ensured compatibility with existing

literature and facilitated comparative analysis. The

selection of FDM parameters was based on preliminary
optimization trials and literature-supported values for
printing PLA-based composites. Key parameters
included a nozzle temperature of 200-215 °C, chosen
to balance melt flow and prevent nandfiller-induced
thermal viscosity increases from causing incomplete
extrusion; a bed temperature of 60 °C to minimize
warping and maintain layer adhesion; a printing speed
of 50 mm/s to ensure uniform filament deposition; a
layer height of 0.2 mm for geometrical fidelity; and an
infill density of 100% for mechanical testing samples to
eliminate effects of internal porosity on strength
measurements. Raster orientation was set to +45° to
represent a widely studied configuration for balancing
anisotropy and load distribution, selected to ensure
comparability — with literature on  FDM-printed
composites. These parameter values were chosen
through a systematic evaluation of print quality,
filament stability, dimensional accuracy, and the need
to minimize thermal degradation of biodegradable
materials. Prior to mechanical testing, printed samples
were conditioned at 23 °C and 50% relative humidity
for 48 hours as recommended for polymeric materials
to stabilize moisture content and internal stresses.
Mechanical testing was carried out using an Instron
5969 universal testing machine equipped with a 50 kN
load cell, selected for its high precision and
compatibility with ASTM standards. Tensile testing was
performed at a crosshead speed of 5 mm/min
according to ASTM D638, ensuring adequate strain
resolution for brittle biodegradable materials. Flexural
tests followed ASTM D790 Procedure A, using a
three-point bending setup with a span-to-depth ratio of
16:1. Each test was performed on at least five
specimens to ensure statistical reliability. Thermal
stability was analyzed using a TA Instruments Q50
thermogravimetric analyzer, operated under nitrogen
atmosphere from 30 °C to 600 °C at 10 °C/min. This
provided insights into degradation onset temperature
(Ts%), maximum decomposition rate, and filler
influence on thermal resistance. Differential scanning
calorimetry (DSC) was conducted using a DSC 250
unit to evaluate crystallinity changes induced by
nanofiller addition and FDM thermal history, applying a
heat-cool-heat cycle from 20 °C to 220 °C at 10 °C/min.
Morphological analysis was performed using a ZEISS
EVO MA10 scanning electron microscope to assess
dispersion of the nanoreinforcements, interlayer
bonding quality, and fracture mechanisms. Samples
were  cryo-fractured in liquid nitrogen and
sputter-coated with gold to prevent charging. SEM was
selected due to its ability to resolve micro- and
nanoscale structural features critical for understanding
filler distribution and its correlation with mechanical
performance. Density and porosity measurements
were performed using an AccuPyc 1l 1340 gas
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pycnometer and the Archimedes method to quantify
internal defects arising from FDM deposition conditions.
These measurements were necessary to contextualize
mechanical behavior and to provide structural
descriptors for the machine learning model. The
methodology was designed intentionally to capture
multiscale structure—property relationships, combining
controlled material synthesis, carefully selected FDM
parameters, and comprehensive characterization. The
use of standardized testing methods ensured
reproducibility and  facilitated integration  of
experimental data into the explainable Al modeling
workflow described in the subsequent sections.

3. RESULTS AND DISCUSSION

The experimental results obtained from the
mechanical, thermal, morphological, and explainable
Al analyses demonstrate the combined influence of
FDM processing parameters  and nanofiller
incorporation on the structure—property relationships of
biodegradable polymer nanocomposites, offering
insight into how nanoscale reinforcements and printing
conditions control the final performance of the printed
parts. The tensile strength of neat PLA specimens
printed under optimized conditions averaged 58.7 + 2.4
MPa, while the addition of 1 wt% CNF increased the
strength to 63.9 + 2.1 MPa and 3 wt% CNF further
enhanced it to 68.4 £ 1.9 MPa, representing an overall
improvement of 16.5% relative to the pristine polymer;
however, at 5 wt% loading, agglomeration effects
caused a slight reduction to 66.2 + 2.6 MPa. Young’s
modulus showed a steady increase from 3.21 + 0.08
GPa for neat PLA to 3.56 + 0.05 GPa at 3 wt% CNF,
highlighting the stiffening effect of nanoscale cellulose
reinforcement. Mechanical performance results are
summarized in Table 1, highlighting tensile and flexural
property enhancements with CNF and nanoclay
reinforcement.

strengths of 64.8 + 1.7 MPa (2 wt%) and 67.5 £ 2.0
MPa (4 wt%) due to intercalation-induced crystallinity
enhancement. Flexural strength followed a similar
trend, improving from 88.4 + 3.2 MPa for neat PLA to a
maximum of 103.1 + 2.9 MPa at 3 wt% CNF,
representing a 16.7% increase, while flexural modulus
increased by up to 12.9%. Thermal analysis revealed
that the degradation onset temperature (Ts%) for neat
PLA (321.6 £ 1.5 °C) increased to 327.4 £+ 1.2 °C at 3
wt% CNF and 329.8 + 1.1 °C at 4 wt% nanoclay,
confirming the role of nanofillers in thermal stabilization
by limiting volatile pathways and inhibiting chain
scission

360 -

CNF

Figure 1: Variation in tensile strength of FDM-printed
biodegradable polymer nanocomposites as a function of
cellulose nanofiber (CNF) loading (0-5%).

1% 3% 5%

DSC data indicated an increase in crystallinity from
8.7% in neat PLA to 12.4% in CNF-reinforced
composites and 14.2% in nanoclay composites,
attributed to nucleation effects and improved molecular
alignment during extrusion and layer deposition.
Morphological observations provided additional
confirmation, with SEM images showing well-dispersed
CNF networks at low concentrations and tact-like
agglomerates at 5 wt% loading. Thermal behavior and
crystallinity results are presented in Table 2,
demonstrating the stabilizing and nucleating effects of
nanoscale reinforcements. As shown in Figure 1,
increasing CNF content significantly enhanced the

Nanoclay-filed  specimens  also  exhibited tensile strength of the nanocomposites, with the
performance improvements, achieving tensile
Table 1: Mechanical Properties of FDM-Printed Biodegradable Nanocomposites
Material Composition | Tensile Strength (MPa) | Tensile Modulus (GPa) Flexural Strength (MPa) Flexural Modulus (GPa)
Neat PLA 58.7+24 3.21+£0.08 88.4+3.2 3.52 £ 0.06
PLA + 1 wt% CNF 63.9+2.1 3.38 £ 0.07 96.3+2.8 3.81+£0.05
PLA + 3 wt% CNF 68.4+19 3.56 £ 0.05 103.1£29 3.97 £ 0.04
PLA + 5 wt% CNF 66.2 £ 2.6 3.47 £ 0.06 98.8 + 3.1 3.90 £ 0.05
PLA + 2 wt% nanoclay 64.8+1.7 3.40 £ 0.06 95.7+2.6 3.79+£0.05
PLA + 4 wt% nanoclay 67.5+20 3.49 £ 0.05 1014 +£2.7 3.94 £ 0.04
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Table 2: Thermal Stability and Crystallinity of Nanocomposites

Material Ts% Degradation (°C) Tmax (°C) Crystallinity (%)
Neat PLA 3216+15 3594 +1.2 8.7
PLA + 1 wt% CNF 3248+1.3 361.7 £1.1 10.6
PLA + 3 wt% CNF 327.4+£1.2 364.9+1.0 12.4
PLA + 4 wt% nanoclay 329.8+1.1 366.1 1.1 14.2

highest improvement observed at 5 wt% loading.

3.51
& 3.0
)
) 2.5 1
3
o 10'
=

0.5

CNF 1% 3% 5%

Figure 2: Elastic modulus of polymer nanocomposites
incorporating varying CNF content.

Nanoclay samples exhibited partially exfoliated
structures at 2—4 wt%, contributing to effective stress
transfer. Interlayer bonding improved notably in
reinforced composites, characterized by narrower void
formations and smoother intralayer transitions, while
excessive filler content resulted in localized porosity
and microcrack formation. Porosity measurements
obtained through pycnometry revealed that neat PLA
exhibited a void fraction of 2.1%, while properly
reinforced composites achieved reduced porosity
levels of 1.6—1.8%, showing the filler’s role in improving
melt viscosity and layer fusion. Higher loadings (5 wt%
CNF) increased porosity to 2.8% due to poor
dispersion. The influence of key FDM processing

parameters on tensile strength is summarized in Table
3. Figure 2 indicates a steady improvement in tensile
modulus with CNF incorporation, confirming the
stiffness-modification capability of nanofillers.

To analyze the data, a multi-step machine learning
methodology was applied, combining experimental
descriptors with  FDM parameters such as nozzle
temperature (200-215 °C), layer height (0.2 mm), infill
density (80-100%), raster angle (+45°), and printing
speed (40-60 mm/s). Random Forest (RF), Gradient
Boosting Regression (GBR), and Support Vector
Regression (SVR) models were trained to predict
tensile strength, flexural strength, modulus, and
thermal properties using 80% of the dataset, while 20%
was reserved for testing. The RF model achieved the
highest accuracy with an R? of 0.93 for tensile strength,
0.91 for tensile modulus, 0.88 for flexural strength, and
0.89 for Ts%. RMSE values for tensile strength (3.1
MPa), flexural strength (4.3 MPa), and modulus (45
MPa) demonstrated the model’s predictive stability.
GBR performed comparatively well (R* = 0.90 for
tensile strength), while SVR was less accurate (R? =
0.84), likely due to nonlinear interactions that
tree-based models captured more effectively.
Processing steps such as data normalization, outlier
removal using interquartile filtering, and k-fold
cross-validation (k = 5) ensured the reliability of the
dataset and minimized bias. The performance and
validation results of RF, GBR, and SVR models are

Table 3: FDM Processing Parameters and Their Impact on Tensile Strength

Parameter Levels Tested Tensile Strength (MPa) Observation
Nozzle Temperature (°C) 200 56.9+2.7 Under-extrusion, weak bonding

210 61.7+2.2 Optimal melt flow
215 64.3+2.1 Best bonding, minimal degradation

Layer Height (mm) 0.20 64.3+2.1 Strongest interlayer bonding
0.25 60.9+25 Reduced contact area
0.30 584 +28 Higher void formation

Infill Density (%) 80 57.2+23 Lower solid mass, voids

100 64.3+2.1 Maximum strength
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Table 4: Machine Learning Model Performance Metrics

Property Predicted Model R? Score RMSE MAPE (%)
Tensile Strength Random Forest 0.93 3.1 MPa 4.7
Gradient Boosting 0.90 3.9 MPa 6.2
SVR 0.84 5.4 MPa 9.5
Flexural Strength Random Forest 0.88 4.3 MPa 5.3
Ts% (Thermal Stability) Random Forest 0.89 22°C 41

shown in Table 4. As illustrated in Figure 3, thermal
stability improved with CNF loading, supporting the
filler-driven thermal shielding phenomenon.

360 1

CNF 1% 3%

CNF content

5%

Figure 3: T5% degradation temperature of nanocomposites
plotted against CNF content.

SHAP explainability analysis was integrated into the
modeling workflow to identify key variables governing
property evolution. SHAP summary plots revealed that
infill density contributed the highest impact on tensile
strength prediction (22.4% influence), followed by
nanofiller dispersion index (18.9%), crystallinity
(16.3%), nozzle temperature (14.1%), layer height
(9.7%), and filler content (8.8%). The directionality of
SHAP values indicated that tensile strength increased
with higher infill density and crystallinity, while
excessively high nozzle temperatures (>215 °C) or
large layer heights (>0.25 mm) negatively influenced
mechanical properties due to weaker interlayer fusion.
For thermal stability predictions, filler—matrix interfacial
compatibility dominated (21.3%), followed by nanoclay
content (17.6%), crystallinity (11.5%), and thermal
conductivity of the composite (9.4%). These results
highlighted the mechanistic role of nanofillers in
restricting molecular mobility and enhancing thermal
barrier effects.

Comparative analysis between CNF and nanoclay
composites revealed that both filler types enhanced
mechanical performance, but through distinct
mechanisms: CNF reinforcement primarily improved
stiffness and strength through hydrogen bonding and

the formation of a percolated network structure,
whereas nanoclay improved crystallinity and thermal
resistance through intercalation and partial exfoliation.
CNF showed superior improvements in tensile strength
(up to 16.5%), while nanoclay contributed more
significantly to thermal stability (Ts% increase of 8.2 °C
compared to neat PLA). Between the two, 3 wt% CNF
and 4 wt% nanoclay emerged as the optimum
compositions for balancing mechanical and thermal
properties. Figure 4 presents SHAP value distributions,
revealing that infill density and nanofiller dispersion
exert the highest impact on mechanical property
predictions.

0.25
0.00
-0.25
-0.50

0.15 025 025 0.25

SHAP Value

Figure 4: SHAP-based explainability analysis identifying the
relative contributions of microstructural and processing
features including infill density, nanofiller dispersion quality,
crystallinity, and nozzle temperature to the predicted tensile
properties.

-0.25

Comparison with literature values for PLA-based
nanocomposites  (5-20%  improvement  range)
demonstrated that the results of this study align well
with established trends while offering performance
enhancements at comparatively lower filler loadings
due to optimized dispersion strategies. Comparisons
across different FDM parameters confirmed that infill
density and nozzle temperature exerted the strongest
influence on mechanical outcomes. At 80% infill,
average tensile strength dropped by ~12% across all
compositions compared to 100% infill, indicating the
critical role of solid structure in stress distribution. Layer
height variations from 0.2 mm to 0.3 mm resulted in a
7-10% reduction in interlayer bonding strength,
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attributed to reduced melt flow—induced diffusion.
Raster orientation showed moderate effects, with +45°
exhibiting balanced properties compared to 0° or 90°,
which showed increased anisotropic behavior. Nozzle
temperature adjustments revealed that temperatures
below 200 °C led to insufficient wetting between layers,
whereas temperatures above 215 °C initiated thermal
degradation, reflected in reduced elongation at break.

5 wt% CNF 5um

0 wt% CNF

Figure 5: SEM micrographs of biodegradable polymer
nanocomposites showing the effect of cellulose nanofiber
(CNF) loading on microstructural morphology.

Validation of experimental and machine learning
predictions was performed through additional samples
not used in model training. Experimental validation on
12 independent samples demonstrated a close
agreement with model-predicted values. For tensile
strength, the mean absolute percentage error (MAPE)
between predicted and measured values was only
4.7%, confirming the robustness of the RF model.
Flexural strength validation yielded a MAPE of 5.3%,
and thermal stability validation resulted in a MAPE of
4.1%. Bland-Altman analysis showed that 95% of the
prediction errors fell within the £1.96 standard deviation
limits, indicating strong reliability of the XAl-assisted
predictive framework. Furthermore, SHAP interaction
plots validated mechanistic insights by showing strong
positive interactions between infill density and
crystallinity, confirming that highly crystalline structures
benefit more significantly from higher material packing
density. The XAl results also validated morphological
observations: samples with better dispersion indices,
as recorded from SEM, corresponded with higher
predicted mechanical performance, reinforcing the
connection between microstructure and macroscopic
behavior. Overall, the results demonstrate that the
integration of experimental characterization with
explainable machine learning enables accurate
prediction and interpretation of structure—property
relationships in FDM-printed biodegradable polymer
nanocomposites, providing a reliable framework for
optimizing material formulations and printing
parameters.

4. CONCLUSION

This study demonstrated that the integration of
biodegradable polymer nanocomposites with
explainable artificial intelligence provides a powerful
pathway for understanding and  optimizing
structure—property  relationships in  FDM-printed
materials. Experimental findings confirmed that the
addition of nanoscale reinforcements such as cellulose
nanofibers and nanoclay significantly enhanced
mechanical and thermal performance, with tensile
strength improvements up to 16.5%, modulus
increases of more than 10%, and thermal stability shifts
of 6-8 °C relative to neat PLA. Morphological analysis
revealed that improved filler dispersion and reduced
porosity strongly contributed to property enhancements,
while excessive filler loading led to
agglomeration-induced performance reductions. The
machine learning models, particularly Random Forest,
achieved high predictive accuracy (R? up to 0.93 for
tensile strength), and SHAP-based explainability
identified infill density, crystallinity, nanofiller dispersion,
and nozzle temperature as the dominant multiscale
factors influencing composite behavior. The integration
of XAl enabled not only accurate predictions but also
mechanistic insights that aligned with experimental
observations, demonstrating the value of interpretable
data-driven tools for material development. Future work
should explore multimodal datasets incorporating
real-time printing signals, rheological descriptors, and
advanced imaging techniques to further strengthen
model interpretability. Expanding the framework to
other biodegradable polymers, hybrid fillers, and
functionally graded structures will broaden its
applicability. Additionally, deep learning models
equipped with intrinsic interpretability or
physics-informed architectures may further improve
predictive fidelity while preserving transparency.
Overall, this study establishes a robust foundation for
using XAl-assisted workflows to accelerate the design,
optimization, and sustainable deployment of
high-performance biodegradable polymer
nanocomposites in additive manufacturing.
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