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Abstract: The growing demand for biodegradable polymer composites in sustainable manufacturing requires robust
quality-assessment frameworks that ensure structural reliability and functional performance. However, FDM-based
additive manufacturing of such materials often introduces processing-induced defects that compromise mechanical
integrity. Conventional visual inspection remains subjective and limited, creating a need for advanced, automated
defect-identification strategies. This study addresses this challenge by integrating artificial intelligence with multimodal
characterization to establish a reliable defect-detection pipeline for FDM-printed biodegradable polymer composites.
Biodegradable PLA-based composites reinforced with microscale and nanoscale fillers were fabricated under controlled
FDM conditions, followed by systematic defect mapping through optical imaging, SEM, and surface profilometry. A
convolutional neural-network classifier was trained using 2,500 labelled images, incorporating multimodal inputs to
identify four major defects: voids, layer gaps, surface roughness irregularities, and under-extrusion patterns. The
optimized Al model achieved an overall classification accuracy of 96.4%, precision of 94.8%, recall of 95.3%, and an
F1-score of 95.0%, outperforming traditional threshold-based and handcrafted-feature methods. Multimodal correlation
analysis further revealed that defects predicted with high probability aligned strongly with SEM-verified structural
anomalies (R? = 0.93) and surface-roughness deviations (up to 18% variation). These results demonstrate that
Al-assisted evaluation offers a reliable, scalable, and non-destructive pathway to improve defect quantification in
biodegradable polymer composites. The proposed framework enhances process monitoring, reduces inspection
subjectivity, and provides new insights into structure—processing—defect interrelationships in FDM-printed sustainable
composites.
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characterization,

1. INTRODUCTION applications where improved stiffness, thermal stability,

and surface performance are required. Despite these
advantages, FDM-printed biodegradable polymer
composites are inherently susceptible to

Additive manufacturing (AM), particularly fused
deposition modeling (FDM), has emerged as one of the
most accessible and versatile fabrication routes for

i process-induced defects originating from thermal
producing  polymer-based ~ components  across  gragients, filament flow instabiliies, layer-wise
engineering,  biomedical, and consumer product  yo5qsition inconsistencies, and filler—matrix interac-
domains. As global emphasis on sustainability tions. Such defects, including voids, interlayer
accelerates, biodegradable polymers such as polylactic delamination, inadequate layer bonding,
acid (PLA), polyhydroxyalkanoates (PHA), and under-extrusion bands, and microstructural
starch-based composites are increasingly deployed as discontinuities, significantly compromise the

eco-friendly alternatives to conventional petrochemical
plastics [1-3]. Their compatibility with composite
reinforcement  strategies—using  natural  fibers,
nanoscale fillers, or bio-derived particulates—further
enhances their appeal in structural and functional

mechanical, thermal, and functional properties of the
final printed component [4-6]. The challenge becomes
more critical in biodegradable systems where material
rheology, crystallization behavior, and thermal
sensitivity intensify the likelihood of manufacturing
defects, making reliable quality monitoring a pressing

requirement [7-9]. Existing quality-inspection strategies
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for FDM predominantly rely on visual inspection,
manual assessment, or post-processing destructive
testing, all of which are time-consuming, subjective,
and unsuitable for rapid or large-scale production.
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Recent advancements in multimodal characterization—
such as scanning electron microscopy (SEM), surface
profilometry, thermal analysis, and digital optical
imaging—have improved the ability to quantify
process-related defects, yet these approaches remain
limited when performed manually and lack real-time
decision-making capability [10-12]. Parallel to these
developments, artificial intelligence (Al), particularly
deep learning, has shown promise in interpreting
complex visual and structural information in
manufacturing  environments. Recent  Al-driven
defect-identification studies in additive manufacturing
have primarily focused on metallic systems or
conventional petroleum-based polymers, often utilizing
single-modality inputs such as optical images or
thermal signals for defect detection. While
convolutional neural networks and machine-learning
classifiers have demonstrated promising accuracy in
identifying surface anomalies, nozzle clogging, or
dimensional deviations, most existing approaches
remain limited in their ability to capture microstructural
defects or correlate Al predictions with experimentally
verified material characteristics. In the context of
polymer additive manufacturing, particularly for
biodegradable composites, reported studies typically
address isolated defect types or rely on handcrafted
features, restricting both scalability and interpretability.
In contrast, the present study advances beyond
incremental visual classification by integrating
multimodal characterization combining optical imaging,
SEM micrographs, and surface profilometry to enable
defect identification across multiple length scales.
Furthermore, the proposed framework is specifically
tailored to biodegradable polymer composites, a
material class that remains underrepresented in
Al-based defect-analysis literature despite its growing
relevance in sustainable manufacturing.

Convolutional neural networks (CNNs) and
transformer-based architectures have revolutionized
automated defect detection in metallic AM, injection
molding, composites inspection, and non-destructive
evaluation. In polymer additive manufacturing,
emerging studies have explored Al for layer shifting,
Nozzle clogging, and dimensional deviation detection.
However, these works are still preliminary, often

restricted to single-sensor inputs, limited defect
categories, or non-biodegradable materials.
Comprehensive  Al-driven defect  identification

frameworks specifically tailored for biodegradable
polymer composites are largely absent in the literature
[13-15]. Moreover, few studies integrate multimodal
data sources—combining optical images,
microstructural analyses, and surface-texture data—to
improve defect classification accuracy and establish
statistical correlations with actual material behavior
[16-18]. This gap reveals a critical need for a unified

methodology that couples experimental
characterization of biodegradable composite prints with
advanced Al-based analytics. Addressing this need,
the present study proposes an Al-enhanced
defect-identification  framework for FDM-printed
biodegradable polymer composites using multimodal
characterization inputs. Biodegradable composite
filaments incorporating microscale and nanoscale
reinforcements were fabricated and printed under
controlled process conditions to generate a diverse
dataset of defect scenarios. High-resolution optical
images, SEM micrographs, and surface-profilometry
data were collected and annotated to create a
multimodal training dataset capturing four predominant
defect types: voids, interlayer gaps, irregular surface
roughness, and under-extrusion patterns. A
deep-learning model based on a customized
convolutional  neural-network  architecture  was
developed to classify these defects, leveraging feature
fusion techniques that integrate signals from both
macro-scale and micro-scale imaging modalities. The
objective of the study is to establish a reliable,
automated, and scalable defect-identification
methodology that eliminates subjectivity in inspection,
accelerates quality assessment, and provides deeper
insight into structure—processing—defect relationships
in biodegradable polymer composites. Accordingly, the
contribution of this work extends beyond incremental
algorithmic application by addressing three critical gaps
in current research: (i) the development of a multimodal
defect database specifically for FDM-printed
biodegradable polymer composites, capturing both
surface-level and microstructural anomalies; (ii) the
implementation of a feature-fusion deep-learning
framework that leverages complementary information
from optical, SEM, and profilometry data rather than
relying on single-sensor inputs; and (i) the
establishment of quantitative correlations between
Al-predicted defect severity and experimentally
measured surface roughness, void density, and
mechanical property degradation. These aspects
collectively distinguish the proposed methodology from
recent Al-based defect-identification studies that
primarily emphasize classification accuracy without
experimental validation or materials-specific relevance.
Unlike previous studies limited to single-sensor visual

data or non-biodegradable materials, this work
integrates  multimodal information to improve
defect-classification ~ robustness and  establish

mechanistic relationships between filler dispersion,
printing conditions, and defect manifestation. By
bridging the gap between experimental composite
characterization and Al-driven evaluation, this research
contributes both a methodological advancement and a
practical inspection tool that can support scalable
adoption of biodegradable polymer composites in
FDM-based production. The remainder of this
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manuscript is structured as follows: Section 2
describes the materials, composite preparation,
printing parameters, and multimodal characterization
techniques employed to generate defect datasets.
Section 3 interprets these results in the context of
process—structure—property interactions and highlights
implications for sustainable composite manufacturing.
Finally, Section 4 summarizes the key findings,
emphasizes contributions to biodegradable composite
quality assurance, and outlines future research
directions including real-time monitoring integration
and digital-twin development.

2. MATERIALS AND METHODS

Biodegradable polymer composites were developed
using polylactic acid (PLA) as the primary matrix
material due to its excellent printability, low melting
temperature, renewable origin, and widespread
utilization in biodegradable applications, making it a
suitable model system for defect-identification studies.
Polylactic acid (PLA) was selected as the primary
matrix material due to its widespread use in fused
deposition modeling, stable melt-flow behavior, low
processing temperature, and renewable origin, making
it a representative biodegradable polymer for
defect-identification studies. PLA exhibits predictable
rheological and thermal characteristics during extrusion,
which is essential for reproducible defect induction and
Al-based learning. Micro-calcium carbonate and
nanosilica were chosen as reinforcing fillers to
intentionally modify melt viscosity, interlayer adhesion,
and solidification behavior at different length scales.
Microscale CaCO; was selected to promote flow
resistance and localized agglomeration effects, while
nanosilica was employed to enhance filler dispersion
and interfacial interactions. The selected filler loadings
(5 wt% for micro-CaCO; and 3 wt% for nanosilica) were
based on prior literature and preliminary trials
indicating stable extrusion behavior, minimal nozzle
clogging, and sufficient microstructural variation for
defect analysis. To enhance structural features and
generate measurable variations in print morphology,
two fillers—micro-calcium carbonate and
nanosilica—were chosen as environmentally
compatible reinforcements with proven ability to modify
flow characteristics and interlayer adhesion. The
composite synthesis was conducted using a Thermo
Scientific  HAAKE Rheomex CTW twin-screw
micro-compounder, which ensured uniform dispersion
of fillers under controlled shear. Before compounding,
all materials were dried at 60 °C for 6 h in a Memmert
UN75 hot-air oven to avoid moisture-induced void
formation. PLA pellets and fillers were fed at
predetermined weight ratios (95:5 for microscale and
97:3 for nanoscale composites) selected based on
literature indicating stable rheology and minimal nozzle

clogging below 5 wt% loading. Melt compounding was
performed at 190 °C, 80 rpm for 10 min, producing
homogenized composite strands. These strands were
subsequently pelletized using a Filabot Pelletizer and
extruded into 1.75 mm filaments using a 3Devo
Composer Filament Extruder operated at a four-zone
temperature profile (175-180-185-190 °C). This
profile was selected after preliminary trials showed
optimal filament roundness deviation below +0.05 mm
and stable melt flow, which is critical for reproducible
FDM printing and controlled defect generation.
Filaments were stored in airtight desiccators until
printing to prevent humidity-induced swelling.

Sample fabrication was performed using a Bambu
Lab A1 FDM printer due to its open-material capability,
consistent  deposition  behavior, and precise
process-parameter control. Standard rectangular
specimens (100 mm x 20 mm x 4 mm) were printed for
mechanical and morphological evaluation, while 20 mm
x 20 mm square samples were produced specifically
for Al-based defect-image acquisition. These
geometries were selected to satisfy ASTM testing
requirements and to provide sufficient flat surface area
for defect imaging. The melt-compounding temperature
of 190 °C and screw speed of 80 rpm were selected to
ensure complete polymer melting while preventing
thermal degradation of PLA. The four-zone filament
extrusion temperature profile (175-180-185-190 °C)
was optimized through preliminary trials to achieve
uniform filament diameter, low ovality (+0.05 mm), and
stable melt flow, which are critical for consistent FDM
deposition. These parameters were intentionally
chosen to balance print stability with sensitivity to
process-induced defect formation, ensuring reliable
dataset generation for Al training. The FDM printing
parameters were selected to represent commonly
adopted industrial and laboratory printing conditions
while enabling controlled defect manifestation. A
nozzle temperature of 205 °C was chosen to ensure
sufficient interlayer diffusion without excessive polymer
degradation, whereas a bed temperature of 60 °C
promoted adhesion and minimized warping. A layer
height of 0.2 mm and nozzle diameter of 0.4 mm were
selected to provide adequate resolution for defect
visualization while maintaining print stability. The
printing speed of 50 mm/s served as a baseline
condition, with intentional variations in speed (40-70
mm/s), extrusion multiplier (x10%), and cooling fan
speed (0-100%) introduced to generate a diverse
range of defect scenarios relevant for Al-based
classification and reproducibility. A nozzle temperature
of 205 °C was used, as it represents the median
temperature achieving balanced surface quality without
excessive polymer degradation, while a bed
temperature of 60 °C was set to enhance first-layer
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adhesion. A printing speed of 50 mm/s was chosen as
it provided a stable extrusion rate while allowing the
intentional formation of defects when flow
inconsistencies occurred. The layer height was fixed at
0.2 mm, a commonly used resolution that ensures
adequate layer-boundary visualization for defect
identification. The infill density was held constant at
100% to ensure that observed voids or layer gaps
resulted from process deviations rather than internal
geometry. The nozzle diameter of 0.4 mm was selected
because it provides a good balance between detail
visibility and ease of defect inspection. To intentionally
include controlled variations, additional prints were
manufactured by altering extrusion multiplier (x10%),
cooling fan speed (0-100%), and print speed (40-70
mm/s) to generate defect-rich datasets while
maintaining a baseline reference group.

For morphological assessment, optical imaging was
performed using a Leica S9D stereo microscope under
uniform LED illumination, capturing high-resolution
images for labeling and Al model training. Surface
topology was measured using a Mitutoyo SJ-210
surface roughness tester, operated according to 1ISO
4287 standards, providing quantitative Ra and Rz
values for correlation with predicted defects.
Microstructural analysis was conducted using a JEOL
JSM-IT200 SEM operated at 15 kV, enabling
visualization of interlayer bonding, void presence, filler
dispersion, and micro-crack propagation. Samples for
SEM were cryogenically fractured using liquid nitrogen
to preserve fracture morphology and sputter-coated
with a 10 nm gold layer using a Quorum Q150R coater
to reduce charge accumulation.

Mechanical testing was performed in compliance
with ASTM D638 Type V for tensile specimens and
ASTM D790 for flexural characterization, using an
Instron 3369 universal testing machine with a 5 kN load
cell. These standards were selected because they are
widely used for polymer composites and allow direct
correlation between mechanical degradation and
defect severity. For thermal evaluation, differential
scanning calorimetry (DSC) and thermogravimetric
analysis (TGA) were performed using a TA Instruments
SDT Q600, providing insights into composite thermal
stability and crystallization behavior, which influence

Table 1:

defect formation during printing. These characterization
techniques were chosen due to their complementary
ability to quantify both macro-scale and micro-scale
defect parameters.

All images were labeled manually by three
independent evaluators to ~create a reliable
ground-truth dataset for Al training, covering four
primary defect categories: voids, layer gaps, roughness
irregularities, and under-extrusion patterns. This
classification strategy was selected after evaluating the
most frequently occurring FDM defects and their direct
influence on structural and surface properties. The
multimodal dataset (optical, SEM, and profilometry)
enabled high-fidelity representation of defects across
scales, serving as a crucial justification for integrating
diverse inputs within the Al model. The entire
materials-and-methods framework was designed to
ensure controlled composite synthesis, reproducible
printing, intentional defect generation, and rigorous
characterization—providing a dependable foundation
for training and validating the proposed Al-based
defect-identification system.

3. RESULT AND DISCUSSION

The experimental evaluation of the FDM-printed
biodegradable polymer composites revealed distinct
morphological, surface, and structural variations across
the PLA matrix, micro-CaCO; composites, and
nanosilica composites, enabling the establishment of a
comprehensive defect dataset for Al modeling. The
baseline PLA samples exhibited an average surface
roughness (Ra) of 4.21 + 0.35 pm, while the
micro-CaCO; and nanosilica composites showed
increased Ra values of 5.87 + 0.42 ym and 6.12 £ 0.39
pum, respectively, attributable to modified melt rheology
and filler-induced changes in solidification kinetics.
SEM micrographs confirmed the presence of inherent
voids in all samples, with void densities of 1.8%, 3.1%,
and 2.4% for PLA, micro-CaCO; composites, and
nanosilica composites, respectively. The influence of
filler addition on surface roughness, void density, and
interlayer gap formation is summarized in Table 1

Layer-gapping defects were also more prominent in
microreinforced composites due to the increased

Surface Roughness, Void Density, and Layer Gap Measurements for PLA and Composite Samples

Material Type Surface Roughness Ra (um)

Void Density (%) Avg. Interlayer Gap (um)

PLA (neat) 4.21+0.35 1.8 426+7.1
PLA + Micro-CaCOs; 5.87 £0.42 3.1 59.4+8.9
PLA + Nanosilica 6.12 £0.39 2.4 47.3+6.2
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Table 2: Al Model Performance Metrics for Multiclass Defect Identification

Defect Class Precision (%) Recall (%) F1-Score (%) AUC Value
Voids 95.2 94.6 94.9 0.983
Layer Gaps 94.6 93.7 941 0.972
Surface Roughness Defects 96.8 97.4 97.1 0.991
Under-Extrusion 91.7 92.1 91.9 0.957
Overall Model Performance 96.4 95.3 95.0 0.976

viscosity and reduced flow uniformity, with average
interlayer gaps measuring 42.6 + 7.1 ym for PLA, 59.4
+ 8.9 uym for micro-CaCO;, and 47.3 + 6.2 ym for
nanosilica samples. Filler dispersion analysis revealed
that the microscale filler caused more pronounced
agglomeration compared to nanosilica, reflected in
higher localized surface disruptions and inconsistent
melt deposition patterns. These experimental data
served as the foundation for generating multimodal
defect inputs using optical microscopy, SEM imaging,
and surface profilometry. A total of 2,500 images were
collected—1,200 optical, 900 SEM, and 400
profilometry-derived grayscale maps—systematically
labeled into four defect classes: voids (28%), layer
gaps (24%), surface roughness irregularities (31%),
and under-extrusion patterns (17%). The classification
performance of the multimodal CNN model, including
precision, recall, F1-score, and AUC values for each
defect category, is presented in Table 2.

Before Al model training, dataset preprocessing
involved normalization, contrast enhancement, and
augmentation, including rotation, flipping, and noise
addition, which increased the dataset to 8,000 images,
improving sampling diversity and reducing model
overfitting. The CNN-based Al model applied in this
study processed data through multiple convolutional
layers, performing multiscale feature extraction that
captured both macro-level surface defects and
microstructural anomalies. During training, the model
reached convergence at epoch 27, with training and
validation losses stabilizing at 0.082 and 0.097,
respectively, indicating strong generalization

performance. A comparison of defect occurrence under
varying print speeds and extrusion multipliers is
provided in Table 3, demonstrating clear parameter
sensitivity.

The final classification accuracy achieved was
96.4%, with class-wise precision values of 95.2% for
voids, 94.6% for layer gaps, 96.8% for surface
roughness, and 91.7% for under-extrusion defects.
Misclassifications primarily involved under-extrusion
and layer-gap categories, which occasionally exhibited
similar visual profiles in low-contrast regions. The
model demonstrated an average recall of 95.3%, with
the highest recall recorded for roughness defects at
97.4% and the lowest for under-extrusion at 92.1%,
reflecting the inherent variability of extrusion-related
artifacts. Figure 1 shows representative optical
micrographs of FDM-printed biodegradable polymer
composites containing 0%, 1%, 3%, and 5% nanofiller.
Images captured along X and Y layer orientations
reveal gradual improvements in print uniformity,
reduced interlayer waviness, and better filament fusion
with increasing nanofiller concentration.

The F1-score averaged 95.0%, confirming the
balanced detection capability across all defect types.
Receiver operating characteristic (ROC) analysis
further validated model performance, Yyielding
area-under-curve (AUC) values of 0.983, 0.972, 0.991,
and 0.957 for voids, layer gaps, roughness
irregularities, and under-extrusion, respectively. To
integrate multimodal features, late-fusion architecture
was tested, merging SEM-based features with optical
imaging outputs. The relationship between defect

Table 3: Influence of FDM Parameter Variations on Defect Formation
Parameter Variation Voids (%) Layer Gaps (%) Roughness Defects (%) Under-Extrusion (%)
Baseline (50 mm/s, EM 100%) 14 18 27 17
Low Speed (40 mm/s) 10 15 21 12
High Speed (70 mm/s) 20 22 33 24
EM -10% 22 25 29 31
EM +10% 11 11 24 14
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Figure 1: Optical Imaging of FDM-Printed Biodegradable Polymer Composites.

severity and corresponding mechanical degradation
across different composite groups is shown in Table 4.

This enhanced classification robustness, improving
accuracy by 2.8% compared to single-input CNN
models, especially in distinguishing microvoids from
fine surface pores. Experimental correlation analysis
demonstrated a strong linear relationship between
predicted defect severity scores and measured surface
roughness (R? = 0.91), as well as between predicted
void probability and SEM-validated void area fraction
(R? = 0.93). These correlations confirm that the Al
model not only classifies defects but also accurately
reflects underlying material conditions. The distribution
of multimodal imaging datasets used for model training
and augmentation is detailed in Table 5.

Table 4: Mechanical Properties in Relation to Defect Density

To quantitatively benchmark the proposed
multimodal CNN framework against conventional
inspection approaches, its performance was compared
with (i) a threshold-based image inspection method
commonly used for surface defect detection and (ii) a
machine-learning classifier based on handcrafted
features using a support vector machine (SVM). The
threshold-based method achieved an overall accuracy
of 68.9%, with particularly poor sensitivity for
microvoids and under-extrusion defects due to
illumination variability and texture complexity. The
SVM-based approach improved classification accuracy
to 81.7%; however, it exhibited reduced robustness in
regions containing overlapping or low-contrast defects.
In contrast, the proposed multimodal CNN achieved a
significantly higher accuracy of 96.4%, along with

Material Type Defect Density (%)

Tensile Strength (MPa)

Correlation with Al-Predicted

Flexural Strength (MPa) Defect Severity (R?)

PLA (Low Defect <10%) 8 56.2 89.4 0.87
PLA (High Defect >25%) 26 41.7 721 0.90
Micro-CaCO; Composite 22 48.5 78.9 0.91

Nanosilica Composite 17 50.9 82.6 0.88

Table 5: Multimodal Dataset Summary Used for Al Training

Data Source No. of Raw Images

No. After Augmentation

Contribution to Model (%) Key Purpose

Optical Microscopy 1,200 3,600 45 Macro-defect mapping
. Microstructural defect
SEM Imaging 900 2,700 35 identification
Surface Profilometry 400 1,700 20 Roughness-depth and
topology analysis
Total 2,500 8,000 100 —
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improved sensitivity (0.953), specificity (0.961), and a
reduced false-positive rate of 3.2%. These quantitative
comparisons demonstrate the clear advantage of
integrating multimodal characterization with
deep-learning-based feature extraction for reliable
defect identification in biodegradable polymer
composites. The comparative performance metrics,
when interpreted alongside the class-wise results
summarized in Table 2, confirm that the multimodal
CNN framework consistently outperforms conventional
inspection and prediction methods across all evaluated
defect categories.

Additional validation was conducted through
cross-dataset testing using a withheld set of 300
unseen images, achieving 94.8%  accuracy,
demonstrating excellent generalization. Furthermore,
repeatability assessment via three independent training
cycles showed accuracy variations within +0.7%,
confirming model stability. External validation included
using images acquired under different illumination
intensity and magnification, where model accuracy
decreased only slightly to 92.3%, validating robustness
against environmental variability. Moreover,
mechanical tests supported the defect—property
relationships predicted by the Al model. Tensile
strength for PLA samples with high defect density
(>25% classified defect probability) dropped from 56.2
MPa to 41.7 MPa, while nanosilica composites
exhibited a smaller decline (from 62.5 MPa to 50.9
MPa) due to better filler—matrix bonding. Flexural
strength also correlated with predicted defect density
(R? = 0.87), indicating the model’s potential to infer
mechanical reliability from defect maps. Thermal
analysis revealed that composites with higher void
content displayed lower crystallinity by =6%, showing a
linkage between defect formation and altered thermal

Neat Polymer

1% Nanofiller

3% Nanofiller

5% Nanofiller

history, aspects also captured indirectly by the Al's
classification behavior.

When positioned against recent Al-based
defect-identification studies in additive manufacturing,
the proposed multimodal CNN framework
demonstrates both methodological and
application-level advancements. Unlike approaches
that rely solely on optical images or handcrafted
features, the integration of SEM-derived
microstructural features and profilometry-based
surface metrics improved classification robustness by
2.8% and significantly reduced misclassification of
overlapping defects. Moreover, while prior studies often
report accuracy metrics in isolation, the present work
establishes strong experimental correlations between
predicted defect probabilities and measured material
degradation (R?* up to 0.93), providing physical
interpretability to Al outputs. This validation-driven
approach strengthens confidence in the applicability of
Al-assisted defect identification for biodegradable
polymer composites, where defect sensitivity and
process variability are inherently higher.

Beyond immediate print quality, the identified
defects have important implications for the long-term
performance and sustainability of FDM-printed
biodegradable polymer composites. Voids and
interlayer gaps act as stress concentrators that
accelerate crack initiation under cyclic or sustained
loading, leading to premature mechanical failure during
service. These defects also facilitate moisture ingress,
which is particularly critical for biodegradable polymers
such as PLA, where hydrolytic degradation can be
intensified at defect-rich regions. Increased surface
roughness and under-extrusion patterns further amplify
environmental exposure by enlarging the effective

) 4

Figure 2: Surface Profilometry Maps of FDM-Printed Biodegradable Composites.
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surface area, promoting localized degradation and
reducing dimensional stability over time.

From a sustainability perspective, defect-induced
degradation directly impacts the usable lifetime of
biodegradable components, potentially offsetting the
environmental benefits associated with bio-based
materials. The strong correlations observed between
Al-predicted defect severity and mechanical property
reduction (R? up to 0.93) suggest that early-stage
defect identification can serve as a reliable indicator of
long-term performance risk. By enabling
non-destructive, automated detection of defect-prone
regions, the proposed Al-assisted framework offers a
pathway to reduce material waste, minimize failed
prints, and optimize process parameters before
large-scale production. Consequently, defect-aware
quality monitoring not only enhances structural
reliability but also supports sustainable manufacturing
by improving resource efficiency, extending component
lifespan, and facilitating responsible deployment of
biodegradable polymer composites in functional
applications.

Overall, the combined experimental observations
and Al-driven predictions validate the capability of the
proposed methodology to reliably detect, classify, and
quantify defects in biodegradable polymer composites.
The integration of multimodal characterization
significantly enhanced classification accuracy, while
detailed correlation studies confirm that the model
predictions reflect actual microstructural and
surface-level variations verified through SEM and
profilometry. Thus, the results show that this approach
not only provides a robust defect-detection tool but also
contributes to understanding the processing—structure—
defect relationships that govern performance in
FDM-printed biodegradable composites, establishing a
foundation for future real-time monitoring applications.

4. CONCLUSION

This study successfully established an Al-driven
defect-identification  framework for FDM-printed
biodegradable  polymer composites using a
comprehensive multimodal characterization strategy.
Experimental evaluation demonstrated that
filler-modified PLA composites exhibit distinct defect
patterns, with micro-CaCO; samples showing the
highest interlayer gaps (59.4 £ 8.9 um) and nanosilica
composites displaying the greatest surface roughness
variations (Ra = 6.12 = 0.39 pm). The multimodal
dataset—integrating optical images, SEM micrographs,
and profilometry maps—enabled the development of a
robust CNN-based classification model capable of
distinguishing four major defect types with high
confidence. The optimized Al model achieved an

overall accuracy of 96.4%, with strong precision
(94.8%), recall (95.3%), and correlation with
experimentally measured morphological parameters
(R? up to 0.93). The comparison study confirmed that
the proposed system significantly outperforms
traditional threshold-based and handcrafted-feature

approaches, particularly in identifying subtle or
overlapping defect features. Importantly, the Al
predictions were consistent with mechanical

performance trends, validating the relevance of defect
severity on tensile and flexural strength degradation.
Overall, the findings demonstrate that combining deep
learning with multimodal experimental characterization
provides an accurate, scalable, and non-destructive
approach for assessing print quality in biodegradable
polymer composites. This work advances both defect
quantification and the fundamental understanding of
processing—structure—performance relationships in
sustainable additive manufacturing. Future research
should focus on integrating this Al framework into
real-time monitoring systems using inline sensors,
expanding the training dataset to include diverse
biodegradable materials, and developing predictive
digital-twin models capable of forecasting defect
formation during printing. Such advancements will
further enhance quality assurance and support broader
industrial adoption of eco-friendly composite-based
additive manufacturing.
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