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Abstract: The growing demand for biodegradable polymer composites in sustainable manufacturing requires robust 
quality-assessment frameworks that ensure structural reliability and functional performance. However, FDM-based 
additive manufacturing of such materials often introduces processing-induced defects that compromise mechanical 
integrity. Conventional visual inspection remains subjective and limited, creating a need for advanced, automated 
defect-identification strategies. This study addresses this challenge by integrating artificial intelligence with multimodal 
characterization to establish a reliable defect-detection pipeline for FDM-printed biodegradable polymer composites. 
Biodegradable PLA-based composites reinforced with microscale and nanoscale fillers were fabricated under controlled 
FDM conditions, followed by systematic defect mapping through optical imaging, SEM, and surface profilometry. A 
convolutional neural-network classifier was trained using 2,500 labelled images, incorporating multimodal inputs to 
identify four major defects: voids, layer gaps, surface roughness irregularities, and under-extrusion patterns. The 
optimized AI model achieved an overall classification accuracy of 96.4%, precision of 94.8%, recall of 95.3%, and an 
F1-score of 95.0%, outperforming traditional threshold-based and handcrafted-feature methods. Multimodal correlation 
analysis further revealed that defects predicted with high probability aligned strongly with SEM-verified structural 
anomalies (R² = 0.93) and surface-roughness deviations (up to 18% variation). These results demonstrate that 
AI-assisted evaluation offers a reliable, scalable, and non-destructive pathway to improve defect quantification in 
biodegradable polymer composites. The proposed framework enhances process monitoring, reduces inspection 
subjectivity, and provides new insights into structure–processing–defect interrelationships in FDM-printed sustainable 
composites. 

Keywords: FDM, Biodegradable polymer composites, Defect identification, Multimodal characterization, 
Convolutional neural network, Surface analysis, Additive manufacturing. 

1. INTRODUCTION 

Additive manufacturing (AM), particularly fused 
deposition modeling (FDM), has emerged as one of the 
most accessible and versatile fabrication routes for 
producing polymer-based components across 
engineering, biomedical, and consumer product 
domains. As global emphasis on sustainability 
accelerates, biodegradable polymers such as polylactic 
acid (PLA), polyhydroxyalkanoates (PHA), and 
starch-based composites are increasingly deployed as 
eco-friendly alternatives to conventional petrochemical 
plastics [1-3]. Their compatibility with composite 
reinforcement strategies—using natural fibers, 
nanoscale fillers, or bio-derived particulates—further 
enhances their appeal in structural and functional  
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applications where improved stiffness, thermal stability, 
and surface performance are required. Despite these 
advantages, FDM-printed biodegradable polymer 
composites are inherently susceptible to 
process-induced defects originating from thermal 
gradients, filament flow instabilities, layer-wise 
deposition inconsistencies, and filler–matrix interac- 
tions. Such defects, including voids, interlayer 
delamination, inadequate layer bonding, 
under-extrusion bands, and microstructural 
discontinuities, significantly compromise the 
mechanical, thermal, and functional properties of the 
final printed component [4-6]. The challenge becomes 
more critical in biodegradable systems where material 
rheology, crystallization behavior, and thermal 
sensitivity intensify the likelihood of manufacturing 
defects, making reliable quality monitoring a pressing 
requirement [7-9]. Existing quality-inspection strategies 
for FDM predominantly rely on visual inspection, 
manual assessment, or post-processing destructive 
testing, all of which are time-consuming, subjective, 
and unsuitable for rapid or large-scale production. 
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Recent advancements in multimodal characterization— 
such as scanning electron microscopy (SEM), surface 
profilometry, thermal analysis, and digital optical 
imaging—have improved the ability to quantify 
process-related defects, yet these approaches remain 
limited when performed manually and lack real-time 
decision-making capability [10-12]. Parallel to these 
developments, artificial intelligence (AI), particularly 
deep learning, has shown promise in interpreting 
complex visual and structural information in 
manufacturing environments. Recent AI-driven 
defect-identification studies in additive manufacturing 
have primarily focused on metallic systems or 
conventional petroleum-based polymers, often utilizing 
single-modality inputs such as optical images or 
thermal signals for defect detection. While 
convolutional neural networks and machine-learning 
classifiers have demonstrated promising accuracy in 
identifying surface anomalies, nozzle clogging, or 
dimensional deviations, most existing approaches 
remain limited in their ability to capture microstructural 
defects or correlate AI predictions with experimentally 
verified material characteristics. In the context of 
polymer additive manufacturing, particularly for 
biodegradable composites, reported studies typically 
address isolated defect types or rely on handcrafted 
features, restricting both scalability and interpretability. 
In contrast, the present study advances beyond 
incremental visual classification by integrating 
multimodal characterization combining optical imaging, 
SEM micrographs, and surface profilometry to enable 
defect identification across multiple length scales. 
Furthermore, the proposed framework is specifically 
tailored to biodegradable polymer composites, a 
material class that remains underrepresented in 
AI-based defect-analysis literature despite its growing 
relevance in sustainable manufacturing. 

Convolutional neural networks (CNNs) and 
transformer-based architectures have revolutionized 
automated defect detection in metallic AM, injection 
molding, composites inspection, and non-destructive 
evaluation. In polymer additive manufacturing, 
emerging studies have explored AI for layer shifting, 
Nozzle clogging, and dimensional deviation detection. 
However, these works are still preliminary, often 
restricted to single-sensor inputs, limited defect 
categories, or non-biodegradable materials. 
Comprehensive AI-driven defect identification 
frameworks specifically tailored for biodegradable 
polymer composites are largely absent in the literature 
[13-15]. Moreover, few studies integrate multimodal 
data sources—combining optical images, 
microstructural analyses, and surface-texture data—to 
improve defect classification accuracy and establish 
statistical correlations with actual material behavior 
[16-18]. This gap reveals a critical need for a unified 

methodology that couples experimental 
characterization of biodegradable composite prints with 
advanced AI-based analytics. Addressing this need, 
the present study proposes an AI-enhanced 
defect-identification framework for FDM-printed 
biodegradable polymer composites using multimodal 
characterization inputs. Biodegradable composite 
filaments incorporating microscale and nanoscale 
reinforcements were fabricated and printed under 
controlled process conditions to generate a diverse 
dataset of defect scenarios. High-resolution optical 
images, SEM micrographs, and surface-profilometry 
data were collected and annotated to create a 
multimodal training dataset capturing four predominant 
defect types: voids, interlayer gaps, irregular surface 
roughness, and under-extrusion patterns. A 
deep-learning model based on a customized 
convolutional neural-network architecture was 
developed to classify these defects, leveraging feature 
fusion techniques that integrate signals from both 
macro-scale and micro-scale imaging modalities. The 
objective of the study is to establish a reliable, 
automated, and scalable defect-identification 
methodology that eliminates subjectivity in inspection, 
accelerates quality assessment, and provides deeper 
insight into structure–processing–defect relationships 
in biodegradable polymer composites. Accordingly, the 
contribution of this work extends beyond incremental 
algorithmic application by addressing three critical gaps 
in current research: (i) the development of a multimodal 
defect database specifically for FDM-printed 
biodegradable polymer composites, capturing both 
surface-level and microstructural anomalies; (ii) the 
implementation of a feature-fusion deep-learning 
framework that leverages complementary information 
from optical, SEM, and profilometry data rather than 
relying on single-sensor inputs; and (iii) the 
establishment of quantitative correlations between 
AI-predicted defect severity and experimentally 
measured surface roughness, void density, and 
mechanical property degradation. These aspects 
collectively distinguish the proposed methodology from 
recent AI-based defect-identification studies that 
primarily emphasize classification accuracy without 
experimental validation or materials-specific relevance. 
Unlike previous studies limited to single-sensor visual 
data or non-biodegradable materials, this work 
integrates multimodal information to improve 
defect-classification robustness and establish 
mechanistic relationships between filler dispersion, 
printing conditions, and defect manifestation. By 
bridging the gap between experimental composite 
characterization and AI-driven evaluation, this research 
contributes both a methodological advancement and a 
practical inspection tool that can support scalable 
adoption of biodegradable polymer composites in 
FDM-based production. The remainder of this 
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manuscript is structured as follows: Section 2 
describes the materials, composite preparation, 
printing parameters, and multimodal characterization 
techniques employed to generate defect datasets. 
Section 3 interprets these results in the context of 
process–structure–property interactions and highlights 
implications for sustainable composite manufacturing. 
Finally, Section 4 summarizes the key findings, 
emphasizes contributions to biodegradable composite 
quality assurance, and outlines future research 
directions including real-time monitoring integration 
and digital-twin development. 

2. MATERIALS AND METHODS 

Biodegradable polymer composites were developed 
using polylactic acid (PLA) as the primary matrix 
material due to its excellent printability, low melting 
temperature, renewable origin, and widespread 
utilization in biodegradable applications, making it a 
suitable model system for defect-identification studies. 
Polylactic acid (PLA) was selected as the primary 
matrix material due to its widespread use in fused 
deposition modeling, stable melt-flow behavior, low 
processing temperature, and renewable origin, making 
it a representative biodegradable polymer for 
defect-identification studies. PLA exhibits predictable 
rheological and thermal characteristics during extrusion, 
which is essential for reproducible defect induction and 
AI-based learning. Micro-calcium carbonate and 
nanosilica were chosen as reinforcing fillers to 
intentionally modify melt viscosity, interlayer adhesion, 
and solidification behavior at different length scales. 
Microscale CaCO₃ was selected to promote flow 
resistance and localized agglomeration effects, while 
nanosilica was employed to enhance filler dispersion 
and interfacial interactions. The selected filler loadings 
(5 wt% for micro-CaCO₃ and 3 wt% for nanosilica) were 
based on prior literature and preliminary trials 
indicating stable extrusion behavior, minimal nozzle 
clogging, and sufficient microstructural variation for 
defect analysis. To enhance structural features and 
generate measurable variations in print morphology, 
two fillers—micro-calcium carbonate and 
nanosilica—were chosen as environmentally 
compatible reinforcements with proven ability to modify 
flow characteristics and interlayer adhesion. The 
composite synthesis was conducted using a Thermo 
Scientific HAAKE Rheomex CTW twin-screw 
micro-compounder, which ensured uniform dispersion 
of fillers under controlled shear. Before compounding, 
all materials were dried at 60 °C for 6 h in a Memmert 
UN75 hot-air oven to avoid moisture-induced void 
formation. PLA pellets and fillers were fed at 
predetermined weight ratios (95:5 for microscale and 
97:3 for nanoscale composites) selected based on 
literature indicating stable rheology and minimal nozzle 

clogging below 5 wt% loading. Melt compounding was 
performed at 190 °C, 80 rpm for 10 min, producing 
homogenized composite strands. These strands were 
subsequently pelletized using a Filabot Pelletizer and 
extruded into 1.75 mm filaments using a 3Devo 
Composer Filament Extruder operated at a four-zone 
temperature profile (175–180–185–190 °C). This 
profile was selected after preliminary trials showed 
optimal filament roundness deviation below ±0.05 mm 
and stable melt flow, which is critical for reproducible 
FDM printing and controlled defect generation. 
Filaments were stored in airtight desiccators until 
printing to prevent humidity-induced swelling. 

Sample fabrication was performed using a Bambu 
Lab A1 FDM printer due to its open-material capability, 
consistent deposition behavior, and precise 
process-parameter control. Standard rectangular 
specimens (100 mm × 20 mm × 4 mm) were printed for 
mechanical and morphological evaluation, while 20 mm 
× 20 mm square samples were produced specifically 
for AI-based defect-image acquisition. These 
geometries were selected to satisfy ASTM testing 
requirements and to provide sufficient flat surface area 
for defect imaging. The melt-compounding temperature 
of 190 °C and screw speed of 80 rpm were selected to 
ensure complete polymer melting while preventing 
thermal degradation of PLA. The four-zone filament 
extrusion temperature profile (175–180–185–190 °C) 
was optimized through preliminary trials to achieve 
uniform filament diameter, low ovality (±0.05 mm), and 
stable melt flow, which are critical for consistent FDM 
deposition. These parameters were intentionally 
chosen to balance print stability with sensitivity to 
process-induced defect formation, ensuring reliable 
dataset generation for AI training. The FDM printing 
parameters were selected to represent commonly 
adopted industrial and laboratory printing conditions 
while enabling controlled defect manifestation. A 
nozzle temperature of 205 °C was chosen to ensure 
sufficient interlayer diffusion without excessive polymer 
degradation, whereas a bed temperature of 60 °C 
promoted adhesion and minimized warping. A layer 
height of 0.2 mm and nozzle diameter of 0.4 mm were 
selected to provide adequate resolution for defect 
visualization while maintaining print stability. The 
printing speed of 50 mm/s served as a baseline 
condition, with intentional variations in speed (40–70 
mm/s), extrusion multiplier (±10%), and cooling fan 
speed (0–100%) introduced to generate a diverse 
range of defect scenarios relevant for AI-based 
classification and reproducibility. A nozzle temperature 
of 205 °C was used, as it represents the median 
temperature achieving balanced surface quality without 
excessive polymer degradation, while a bed 
temperature of 60 °C was set to enhance first-layer 
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adhesion. A printing speed of 50 mm/s was chosen as 
it provided a stable extrusion rate while allowing the 
intentional formation of defects when flow 
inconsistencies occurred. The layer height was fixed at 
0.2 mm, a commonly used resolution that ensures 
adequate layer-boundary visualization for defect 
identification. The infill density was held constant at 
100% to ensure that observed voids or layer gaps 
resulted from process deviations rather than internal 
geometry. The nozzle diameter of 0.4 mm was selected 
because it provides a good balance between detail 
visibility and ease of defect inspection. To intentionally 
include controlled variations, additional prints were 
manufactured by altering extrusion multiplier (±10%), 
cooling fan speed (0–100%), and print speed (40–70 
mm/s) to generate defect-rich datasets while 
maintaining a baseline reference group. 

For morphological assessment, optical imaging was 
performed using a Leica S9D stereo microscope under 
uniform LED illumination, capturing high-resolution 
images for labeling and AI model training. Surface 
topology was measured using a Mitutoyo SJ-210 
surface roughness tester, operated according to ISO 
4287 standards, providing quantitative Ra and Rz 
values for correlation with predicted defects. 
Microstructural analysis was conducted using a JEOL 
JSM-IT200 SEM operated at 15 kV, enabling 
visualization of interlayer bonding, void presence, filler 
dispersion, and micro-crack propagation. Samples for 
SEM were cryogenically fractured using liquid nitrogen 
to preserve fracture morphology and sputter-coated 
with a 10 nm gold layer using a Quorum Q150R coater 
to reduce charge accumulation. 

Mechanical testing was performed in compliance 
with ASTM D638 Type V for tensile specimens and 
ASTM D790 for flexural characterization, using an 
Instron 3369 universal testing machine with a 5 kN load 
cell. These standards were selected because they are 
widely used for polymer composites and allow direct 
correlation between mechanical degradation and 
defect severity. For thermal evaluation, differential 
scanning calorimetry (DSC) and thermogravimetric 
analysis (TGA) were performed using a TA Instruments 
SDT Q600, providing insights into composite thermal 
stability and crystallization behavior, which influence 

defect formation during printing. These characterization 
techniques were chosen due to their complementary 
ability to quantify both macro-scale and micro-scale 
defect parameters. 

All images were labeled manually by three 
independent evaluators to create a reliable 
ground-truth dataset for AI training, covering four 
primary defect categories: voids, layer gaps, roughness 
irregularities, and under-extrusion patterns. This 
classification strategy was selected after evaluating the 
most frequently occurring FDM defects and their direct 
influence on structural and surface properties. The 
multimodal dataset (optical, SEM, and profilometry) 
enabled high-fidelity representation of defects across 
scales, serving as a crucial justification for integrating 
diverse inputs within the AI model. The entire 
materials-and-methods framework was designed to 
ensure controlled composite synthesis, reproducible 
printing, intentional defect generation, and rigorous 
characterization—providing a dependable foundation 
for training and validating the proposed AI-based 
defect-identification system. 

3. RESULT AND DISCUSSION 

The experimental evaluation of the FDM-printed 
biodegradable polymer composites revealed distinct 
morphological, surface, and structural variations across 
the PLA matrix, micro-CaCO₃ composites, and 
nanosilica composites, enabling the establishment of a 
comprehensive defect dataset for AI modeling. The 
baseline PLA samples exhibited an average surface 
roughness (Ra) of 4.21 ± 0.35 µm, while the 
micro-CaCO₃ and nanosilica composites showed 
increased Ra values of 5.87 ± 0.42 µm and 6.12 ± 0.39 
µm, respectively, attributable to modified melt rheology 
and filler-induced changes in solidification kinetics. 
SEM micrographs confirmed the presence of inherent 
voids in all samples, with void densities of 1.8%, 3.1%, 
and 2.4% for PLA, micro-CaCO₃ composites, and 
nanosilica composites, respectively. The influence of 
filler addition on surface roughness, void density, and 
interlayer gap formation is summarized in Table 1 

Layer-gapping defects were also more prominent in 
microreinforced composites due to the increased 

Table 1: Surface Roughness, Void Density, and Layer Gap Measurements for PLA and Composite Samples 

Material Type Surface Roughness Ra (µm) Void Density (%) Avg. Interlayer Gap (µm) 

PLA (neat) 4.21 ± 0.35 1.8 42.6 ± 7.1 

PLA + Micro-CaCO₃  5.87 ± 0.42 3.1 59.4 ± 8.9 

PLA + Nanosilica 6.12 ± 0.39 2.4 47.3 ± 6.2 
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viscosity and reduced flow uniformity, with average 
interlayer gaps measuring 42.6 ± 7.1 µm for PLA, 59.4 
± 8.9 µm for micro-CaCO₃, and 47.3 ± 6.2 µm for 
nanosilica samples. Filler dispersion analysis revealed 
that the microscale filler caused more pronounced 
agglomeration compared to nanosilica, reflected in 
higher localized surface disruptions and inconsistent 
melt deposition patterns. These experimental data 
served as the foundation for generating multimodal 
defect inputs using optical microscopy, SEM imaging, 
and surface profilometry. A total of 2,500 images were 
collected—1,200 optical, 900 SEM, and 400 
profilometry-derived grayscale maps—systematically 
labeled into four defect classes: voids (28%), layer 
gaps (24%), surface roughness irregularities (31%), 
and under-extrusion patterns (17%). The classification 
performance of the multimodal CNN model, including 
precision, recall, F1-score, and AUC values for each 
defect category, is presented in Table 2. 

Before AI model training, dataset preprocessing 
involved normalization, contrast enhancement, and 
augmentation, including rotation, flipping, and noise 
addition, which increased the dataset to 8,000 images, 
improving sampling diversity and reducing model 
overfitting. The CNN-based AI model applied in this 
study processed data through multiple convolutional 
layers, performing multiscale feature extraction that 
captured both macro-level surface defects and 
microstructural anomalies. During training, the model 
reached convergence at epoch 27, with training and 
validation losses stabilizing at 0.082 and 0.097, 
respectively, indicating strong generalization 

performance. A comparison of defect occurrence under 
varying print speeds and extrusion multipliers is 
provided in Table 3, demonstrating clear parameter 
sensitivity. 

The final classification accuracy achieved was 
96.4%, with class-wise precision values of 95.2% for 
voids, 94.6% for layer gaps, 96.8% for surface 
roughness, and 91.7% for under-extrusion defects. 
Misclassifications primarily involved under-extrusion 
and layer-gap categories, which occasionally exhibited 
similar visual profiles in low-contrast regions. The 
model demonstrated an average recall of 95.3%, with 
the highest recall recorded for roughness defects at 
97.4% and the lowest for under-extrusion at 92.1%, 
reflecting the inherent variability of extrusion-related 
artifacts. Figure 1 shows representative optical 
micrographs of FDM-printed biodegradable polymer 
composites containing 0%, 1%, 3%, and 5% nanofiller. 
Images captured along X and Y layer orientations 
reveal gradual improvements in print uniformity, 
reduced interlayer waviness, and better filament fusion 
with increasing nanofiller concentration. 

The F1-score averaged 95.0%, confirming the 
balanced detection capability across all defect types. 
Receiver operating characteristic (ROC) analysis 
further validated model performance, yielding 
area-under-curve (AUC) values of 0.983, 0.972, 0.991, 
and 0.957 for voids, layer gaps, roughness 
irregularities, and under-extrusion, respectively. To 
integrate multimodal features, late-fusion architecture 
was tested, merging SEM-based features with optical 
imaging outputs. The relationship between defect 

Table 2: AI Model Performance Metrics for Multiclass Defect Identification 

Defect Class Precision (%) Recall (%) F1-Score (%) AUC Value 

Voids 95.2 94.6 94.9 0.983 

Layer Gaps 94.6 93.7 94.1 0.972 

Surface Roughness Defects 96.8 97.4 97.1 0.991 

Under-Extrusion 91.7 92.1 91.9 0.957 

Overall Model Performance 96.4 95.3 95.0 0.976 

 

Table 3: Influence of FDM Parameter Variations on Defect Formation 

Parameter Variation Voids (%) Layer Gaps (%) Roughness Defects (%) Under-Extrusion (%) 

Baseline (50 mm/s, EM 100%) 14 18 27 17 

Low Speed (40 mm/s) 10 15 21 12 

High Speed (70 mm/s) 20 22 33 24 

EM –10% 22 25 29 31 

EM +10% 11 11 24 14 
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severity and corresponding mechanical degradation 
across different composite groups is shown in Table 4. 

This enhanced classification robustness, improving 
accuracy by 2.8% compared to single-input CNN 
models, especially in distinguishing microvoids from 
fine surface pores. Experimental correlation analysis 
demonstrated a strong linear relationship between 
predicted defect severity scores and measured surface 
roughness (R² = 0.91), as well as between predicted 
void probability and SEM-validated void area fraction 
(R² = 0.93). These correlations confirm that the AI 
model not only classifies defects but also accurately 
reflects underlying material conditions. The distribution 
of multimodal imaging datasets used for model training 
and augmentation is detailed in Table 5. 

To quantitatively benchmark the proposed 
multimodal CNN framework against conventional 
inspection approaches, its performance was compared 
with (i) a threshold-based image inspection method 
commonly used for surface defect detection and (ii) a 
machine-learning classifier based on handcrafted 
features using a support vector machine (SVM). The 
threshold-based method achieved an overall accuracy 
of 68.9%, with particularly poor sensitivity for 
microvoids and under-extrusion defects due to 
illumination variability and texture complexity. The 
SVM-based approach improved classification accuracy 
to 81.7%; however, it exhibited reduced robustness in 
regions containing overlapping or low-contrast defects. 
In contrast, the proposed multimodal CNN achieved a 
significantly higher accuracy of 96.4%, along with 

 

Figure 1: Optical Imaging of FDM-Printed Biodegradable Polymer Composites. 

Table 4: Mechanical Properties in Relation to Defect Density 

Material Type Defect Density (%) Tensile Strength (MPa) Flexural Strength (MPa) Correlation with AI-Predicted 
Defect Severity (R²) 

PLA (Low Defect <10%) 8 56.2 89.4 0.87 

PLA (High Defect >25%) 26 41.7 72.1 0.90 

Micro-CaCO₃  Composite 22 48.5 78.9 0.91 

Nanosilica Composite 17 50.9 82.6 0.88 

 

Table 5: Multimodal Dataset Summary Used for AI Training 

Data Source No. of Raw Images No. After Augmentation Contribution to Model (%) Key Purpose 

Optical Microscopy 1,200 3,600 45 Macro-defect mapping 

SEM Imaging 900 2,700 35 Microstructural defect 
identification 

Surface Profilometry 400 1,700 20 Roughness-depth and 
topology analysis 

Total 2,500 8,000 100 — 
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improved sensitivity (0.953), specificity (0.961), and a 
reduced false-positive rate of 3.2%. These quantitative 
comparisons demonstrate the clear advantage of 
integrating multimodal characterization with 
deep-learning-based feature extraction for reliable 
defect identification in biodegradable polymer 
composites. The comparative performance metrics, 
when interpreted alongside the class-wise results 
summarized in Table 2, confirm that the multimodal 
CNN framework consistently outperforms conventional 
inspection and prediction methods across all evaluated 
defect categories. 

Additional validation was conducted through 
cross-dataset testing using a withheld set of 300 
unseen images, achieving 94.8% accuracy, 
demonstrating excellent generalization. Furthermore, 
repeatability assessment via three independent training 
cycles showed accuracy variations within ±0.7%, 
confirming model stability. External validation included 
using images acquired under different illumination 
intensity and magnification, where model accuracy 
decreased only slightly to 92.3%, validating robustness 
against environmental variability. Moreover, 
mechanical tests supported the defect–property 
relationships predicted by the AI model. Tensile 
strength for PLA samples with high defect density 
(>25% classified defect probability) dropped from 56.2 
MPa to 41.7 MPa, while nanosilica composites 
exhibited a smaller decline (from 62.5 MPa to 50.9 
MPa) due to better filler–matrix bonding. Flexural 
strength also correlated with predicted defect density 
(R² = 0.87), indicating the model’s potential to infer 
mechanical reliability from defect maps. Thermal 
analysis revealed that composites with higher void 
content displayed lower crystallinity by ≈6%, showing a 
linkage between defect formation and altered thermal 

history, aspects also captured indirectly by the AI’s 
classification behavior.  

When positioned against recent AI-based 
defect-identification studies in additive manufacturing, 
the proposed multimodal CNN framework 
demonstrates both methodological and 
application-level advancements. Unlike approaches 
that rely solely on optical images or handcrafted 
features, the integration of SEM-derived 
microstructural features and profilometry-based 
surface metrics improved classification robustness by 
2.8% and significantly reduced misclassification of 
overlapping defects. Moreover, while prior studies often 
report accuracy metrics in isolation, the present work 
establishes strong experimental correlations between 
predicted defect probabilities and measured material 
degradation (R² up to 0.93), providing physical 
interpretability to AI outputs. This validation-driven 
approach strengthens confidence in the applicability of 
AI-assisted defect identification for biodegradable 
polymer composites, where defect sensitivity and 
process variability are inherently higher.  

Beyond immediate print quality, the identified 
defects have important implications for the long-term 
performance and sustainability of FDM-printed 
biodegradable polymer composites. Voids and 
interlayer gaps act as stress concentrators that 
accelerate crack initiation under cyclic or sustained 
loading, leading to premature mechanical failure during 
service. These defects also facilitate moisture ingress, 
which is particularly critical for biodegradable polymers 
such as PLA, where hydrolytic degradation can be 
intensified at defect-rich regions. Increased surface 
roughness and under-extrusion patterns further amplify 
environmental exposure by enlarging the effective 

 

Figure 2: Surface Profilometry Maps of FDM-Printed Biodegradable Composites. 
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surface area, promoting localized degradation and 
reducing dimensional stability over time. 

From a sustainability perspective, defect-induced 
degradation directly impacts the usable lifetime of 
biodegradable components, potentially offsetting the 
environmental benefits associated with bio-based 
materials. The strong correlations observed between 
AI-predicted defect severity and mechanical property 
reduction (R² up to 0.93) suggest that early-stage 
defect identification can serve as a reliable indicator of 
long-term performance risk. By enabling 
non-destructive, automated detection of defect-prone 
regions, the proposed AI-assisted framework offers a 
pathway to reduce material waste, minimize failed 
prints, and optimize process parameters before 
large-scale production. Consequently, defect-aware 
quality monitoring not only enhances structural 
reliability but also supports sustainable manufacturing 
by improving resource efficiency, extending component 
lifespan, and facilitating responsible deployment of 
biodegradable polymer composites in functional 
applications. 

Overall, the combined experimental observations 
and AI-driven predictions validate the capability of the 
proposed methodology to reliably detect, classify, and 
quantify defects in biodegradable polymer composites. 
The integration of multimodal characterization 
significantly enhanced classification accuracy, while 
detailed correlation studies confirm that the model 
predictions reflect actual microstructural and 
surface-level variations verified through SEM and 
profilometry. Thus, the results show that this approach 
not only provides a robust defect-detection tool but also 
contributes to understanding the processing–structure– 
defect relationships that govern performance in 
FDM-printed biodegradable composites, establishing a 
foundation for future real-time monitoring applications. 

4. CONCLUSION  

This study successfully established an AI-driven 
defect-identification framework for FDM-printed 
biodegradable polymer composites using a 
comprehensive multimodal characterization strategy. 
Experimental evaluation demonstrated that 
filler-modified PLA composites exhibit distinct defect 
patterns, with micro-CaCO₃ samples showing the 
highest interlayer gaps (59.4 ± 8.9 µm) and nanosilica 
composites displaying the greatest surface roughness 
variations (Ra = 6.12 ± 0.39 µm). The multimodal 
dataset—integrating optical images, SEM micrographs, 
and profilometry maps—enabled the development of a 
robust CNN-based classification model capable of 
distinguishing four major defect types with high 
confidence. The optimized AI model achieved an 

overall accuracy of 96.4%, with strong precision 
(94.8%), recall (95.3%), and correlation with 
experimentally measured morphological parameters 
(R² up to 0.93). The comparison study confirmed that 
the proposed system significantly outperforms 
traditional threshold-based and handcrafted-feature 
approaches, particularly in identifying subtle or 
overlapping defect features. Importantly, the AI 
predictions were consistent with mechanical 
performance trends, validating the relevance of defect 
severity on tensile and flexural strength degradation. 
Overall, the findings demonstrate that combining deep 
learning with multimodal experimental characterization 
provides an accurate, scalable, and non-destructive 
approach for assessing print quality in biodegradable 
polymer composites. This work advances both defect 
quantification and the fundamental understanding of 
processing–structure–performance relationships in 
sustainable additive manufacturing. Future research 
should focus on integrating this AI framework into 
real-time monitoring systems using inline sensors, 
expanding the training dataset to include diverse 
biodegradable materials, and developing predictive 
digital-twin models capable of forecasting defect 
formation during printing. Such advancements will 
further enhance quality assurance and support broader 
industrial adoption of eco-friendly composite-based 
additive manufacturing. 
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