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Abstract: Biodegradable polymer nanocomposites have emerged as promising sustainable materials for additive
manufacturing, especially in Fused Deposition Modeling (FDM). However, their printability and mechanical performance
remain highly sensitive to formulation variability and process parameter interactions. Addressing these limitations
requires a systematic and predictive approach that integrates materials engineering with advanced data-driven tools.
The present work aims to develop a machine learning-driven optimization framework for enhancing the printability and
strength of biodegradable polymer nanocomposites used in FDM. A series of PLA-based and PHA-modified
nanocomposites reinforced with cellulose nanocrystals (CNC) and nanosilica (SiO,) were fabricated using a
design-of-experiments approach. Key extrusion and printing parameters—including nozzle temperature, bed
temperature, infill density, raster angle, and feed rate—were systematically varied to generate a comprehensive
experimental dataset. Supervised machine learning models (Random Forest, XGBoost, and Artificial Neural Networks)
were trained to predict printability indices and mechanical responses, including tensile strength, layer adhesion, and
dimensional accuracy. Among the models evaluated, XGBoost achieved the highest predictive accuracy with an R? of
0.96 for tensile strength and 0.94 for printability. Feature importance analysis revealed that nanofiller loading, nozzle
temperature, and infill density were the most influential factors. The optimized formulation identified by the ML
framework—PLA/PHA with 1.5 wt% CNC—combined with optimal FDM settings resulted in a 22.8% improvement in
tensile strength and a 17.4% increase in printability index compared to baseline samples. These results demonstrate
that machine learning offers a powerful pathway for designing next-generation biodegradable nanocomposites and
advancing sustainable, high-performance FDM manufacturing.

Keywords: Biodegradable polymer nanocomposites, Machine learning optimization, FDM printability, PLA/PHA
composites, Nanofillers, Mechanical strength, Sustainable additive manufacturing.

1. INTRODUCTION composite blends. At the same time, the incorporation
of nanoscale reinforcements—such as cellulose
nanocrystals (CNC), nanosilica (SiO,), graphene
derivatives, or nanohydroxyapatite—has opened
avenues for engineering biodegradable polymer
nanocomposites with improved stiffness, thermal
stability, and interlayer adhesion suitable for functional
FDM applications [3-5]. Despite these benefits, the
printability = and  mechanical performance  of
biodegradable polymer nanocomposites remain
challenging due to their inherently complex material
interactions, sensitivity to processing conditions, and

Biodegradable polymers have gained significant
attention in recent years as global industries move
toward greener manufacturing practices and reduced
environmental impact, particularly in applications
where conventional petroleum-based plastics
contribute to long-term ecological burden [1-2]. Their
integration  with  additive = manufacturing  (AM)
technologies has created new pathways for producing
sustainable, lightweight, and high-performance
components. Among various AM methods, Fused
Deposition Modeling (FDM) stands out due to its g5 e5 associated with nanoparticle dispersion, melt
simplicity, cost-effectiveness, and compatibility with  \iscosity, and interlayer bonding. In practice, the print
thermoplastic biopolymers such as poly(lactic acid)  qyality and structural integrity of these composites
(PLA), polyhydroxyalkanoates (PHA), and their depend on nonlinear relationships between material

formulations, rheological characteristics, and numerous

FDM process parameters such as extrusion
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parameter interactions that define FDM performance of
biodegradable nanocomposites [6-8]. Recent studies
have attempted to address these issues through
systematic experimental design, formulation
Optimization, and process tuning. However, these
approaches primarily focus on individual parameters or
limited combinations, thereby restricting their ability to
produce globally optimized solutions. Additionally, most
existing research on biodegradable polymer
nanocomposites emphasizes the chemical or structural
modification of materials, with far fewer studies
adopting integrated perspectives that link material
formulation, process optimization, and performance
prediction through advanced computational
approaches [9-12].

In the past few years, machine learning (ML) has
emerged as a powerful tool for materials informatics,
enabling prediction, classification, and optimization
across a wide range of polymers, composites, and AM
processes. ML models such as Random Forests,
Support Vector Machines, Gradient Boosting, and
Artificial Neural Networks have demonstrated strong
capability in learning complex nonlinear trends from
experimental data, significantly reducing dependency
on empirical trial-and-error approaches [13-15]. Within
the field of additive manufacturing, ML has been
successfully applied for improving surface roughness,
predicting mechanical properties, detecting defects,
and optimizing FDM parameters for conventional
polymers. Yet, only a limited number of studies have
explored ML-assisted optimization for biodegradable
polymer nanocomposites, and even fewer have
integrated both material and process parameters into a
single predictive framework [16-18]. The emerging
literature suggests that nanofiller loading, nanoparticle
type, matrix polarity, and interfacial interactions
substantially  influence  processing temperature
windows, melt flow consistency, extrudability, and final
part strength [19-21]. Similarly, extruder temperature,
infill strategy, layer thickness, and cooling rate
determine the printability and structural integrity of
nanocomposite parts [22-24]. However, the synergistic
interaction between material formulation variables and
process parameters remains largely underexplored in
ML-driven studies. Most available datasets lack the
diversity required to train robust models, and current
approaches often do not perform feature importance
analysis to identify the true drivers of enhanced
printability or strength. Consequently, there exists a
clear research gap in leveraging ML to design
biodegradable polymer nanocomposites specifically
tailored for high-performance FDM printing, where
predicting printability and mechanical outcomes from a
combination of material and process features is
essential for developing next-generation sustainable
manufacturing technologies. Among the various

nanofillers reported for biodegradable polymer
composites such as graphene derivatives, nanoclays,
nanohydroxyapatite, and carbon nanotubes cellulose
nanocrystals (CNC) and nanosilica (SiO,) offer a
balanced combination of sustainability, processability,
and cost-effectiveness. CNC represents a renewable,
bio-derived nanofiller with high aspect ratio and strong
hydrogen-bonding capability, which has been shown to
enhance crystallization behavior, interlayer adhesion,
and stiffness in PLA-based FDM systems at low
loadings. In contrast, SiO, serves as a chemically inert
inorganic nanofiller with spherical morphology,
providing improved thermal stability and melt flow
control while minimizing agglomeration and nozzle
clogging during extrusion. Compared to electrically
conductive or bioactive fillers, which are often
application-specific and introduce additional processing

complexity, CNC and SiO, enable systematic
exploration of filler—matrix—process interactions
relevant to general-purpose biodegradable FDM

applications.

To address these limitations, the present study
proposes a comprehensive machine learning-driven
optimization framework for improving both the
printability and mechanical strength of biodegradable
polymer nanocomposites intended for FDM
applications. The work focuses on developing
PLA/PHA-based nanocomposites reinforced with CNC
and SiO, nanoparticles, generating a systematic
experimental dataset through design-of-experiments
(DOE), and training multiple ML models—including
Random Forest, XGBoost, and Artificial Neural
Networks—to accurately predict key FDM performance
indicators such as tensile strength, layer adhesion
quality, and a composite printability index. The
objective is to establish predictive models capable of
learning nonlinear dependencies between nanofiller
concentration, polymer blend ratios, rheological
signatures, and critical FDM processing parameters.
Feature importance analysis is further employed to
identify governing factors influencing printability and
strength, enabling targeted optimization of composite
formulation and printing settings. By integrating
data-driven predictions with experimental validation,
this research aims to demonstrate a scalable and
intelligent approach for designing biodegradable
nanocomposites that not only meet sustainability goals
but also achieve high mechanical reliability and
consistent printing performance.

While recent studies have reported the application
of machine learning techniques for optimizing FDM
process parameters of PLA and PLA-based
biodegradable polymers, most existing works are
limited to single-polymer systems and primarily
emphasize process-level tuning without explicitly
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accounting for formulation-driven material variability. In
contrast, the present study establishes a unified
machine learning framework that simultaneously
integrates material-level parameters—including
PLA/PHA blend ratio, nanofiller type (CNC and SiO,),
nanofiller loading, and rheological characteristics—with
critical FDM processing variables to predict both
printability and mechanical performance. Furthermore,
this work introduces a composite printability index
specifically designed for biodegradable polymer
nanocomposites, capturing extrudability, interlayer
fusion, dimensional stability, and surface quality within
a single quantitative metric. Feature importance
analysis is employed to mechanistically identify
dominant material-process interactions governing
performance, enabling targeted optimization rather
than empirical parameter adjustment. This integrated,
data-driven approach represents a substantive
advancement beyond prior ML-assisted FDM studies
on biodegradable polymers, which typically address
material formulation and process optimization in
isolation.

The remainder of this manuscript is structured as
follows: the Materials and Methods section describes
the preparation of biodegradable nanocomposite
formulations, the experimental design strategy, data
acquisition procedures, and the machine learning
techniques utilized. The Results and Discussion
section presents the predictive performance of the ML
models, analyses key features influencing printability
and strength, and highlights the optimized composite
formulation and FDM parameters. The final section
provides conclusions, implications for biodegradable
composite design, and possible future directions for
integrating ML with multi-objective optimization and
advanced AM technologies.

2. MATERIALS AND METHODS

The selection of materials for this study was driven
by the need to develop environmentally sustainable
nanocomposites with balanced printability and
mechanical performance suitable for Fused Deposition
Modeling (FDM). PLA was chosen as the primary
biodegradable polymer matrix due to its widespread
use in FDM, excellent dimensional stability, and low
thermal shrinkage, while PHA was incorporated as a
modifier to enhance ductility and interlayer adhesion,
addressing the inherent brittleness of neat PLA. The
nanofillers selected cellulose nanocrystals (CNC) and
nanosilica (SiO,) were chosen based on their proven
ability to improve stiffness, melt strength, and thermal
stability without compromising biodegradability. The
selection of CNC and SiO, was therefore motivated by
their complementary reinforcement mechanisms and
contrasting interfacial behaviors, allowing evaluation of

both bio-based and inorganic nanofiller effects within a
unified ML optimization framework. This approach
facilitates generalizable insights into how nanofiller
chemistry and morphology influence rheology,
printability, and mechanical performance, while
maintaining compatibility with scalable and sustainable
FDM manufacturing. CNC was preferred for its
renewable origin and strong hydrogen bonding affinity
with PLA/PHA, whereas SiO, was included to enhance
heat resistance and control melt flow behavior. The
synthesis of nanocomposites was carried out using a
twin-screw micro-compounder (Thermo Scientific
HAAKE MiniLab Il), selected for its precise temperature
control and effective dispersion capability at low batch
volumes. Prior to compounding, CNC was dried at
60 °C for 12 h in a vacuum oven (Memmert VO Series)
to avoid moisture-induced agglomeration. The polymer
pellets were dried at 45 °C for 8 h to ensure consistent
melt viscosity. Compounding was performed at
180-190 °C, 60 rpm, for 7 minutes to ensure uniform
dispersion while avoiding thermal degradation. The
extruded strands were pelletized and re-extruded using
a single-screw filament extruder (3D Filament
Extrusion Line, Filabot EX2) fitted with a 1.75 mm die.
The filament extrusion temperature profile was
optimized through preliminary rheological screening:
the chosen temperatures of 165-175-185 °C for the
three heating zones ensured smooth flow, minimal
bubble formation, and stable filament diameter, justified
by melt flow index (MFI) measurements that indicated
stable rheology and minimal shear thinning at these
temperatures.

The fabricated filaments were stored in airtight
containers with desiccant pouches prior to printing to
prevent moisture absorption, which can severely affect
printability and interlayer bonding. Sample preparation
for FDM printing followed ASTM standards to ensure
reliability and comparability of results. Tensile
specimens were prepared according to ASTM D638
Type IV geometry due to its suitability for polymer
composites with limited thickness. Printing was carried
out using an Bambu Lab A1 FDM printer equipped with
a 0.4 mm brass nozzle, chosen for its precision,
reproducibility, =~ and good compatibility  with
biodegradable polymers. The FDM processing
parameters were determined through a two-step
procedure: literature-based benchmarking followed by
a design-of-experiments (DOE) tuning phase. Nozzle
temperature  (190-215 °C), bed temperature
(50-65 °C), infill density (60-100 %), layer height
(0.1-0.2 mm), and raster angle (0°/45°/90°) were
selected based on preliminary trials to identify ranges
that prevent stringing, under-extrusion, delamination,
and warpage. The final parameter sets used in the ML
prediction dataset were selected from DOE
combinations that consistently produced defect-free
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prints. The justification for nozzle temperature selection
lies in balancing melt viscosity and thermal
degradation: PLA/PHA blends exhibit improved flow
above 195 °C, while thermal instability begins near
220 °C; hence the optimized range was scientifically
constrained. Similarly, a bed temperature of 60 °C
minimized warping without excessive softening of the
polymer. Infill density and raster angles were varied to
evaluate their influence on tensile anisotropy and
interlayer bonding key parameters affecting ML
prediction of printability and strength.

Mechanical testing of the printed specimens was
performed on a universal testing machine (Instron
3369) with a 5 kN load cell at a crosshead speed of 5
mm/min, following ASTM D638 procedures. Three
specimens per condition were tested to ensure
statistical significance. Dimensional accuracy and
printability assessments were performed using a digital
caliper (Mitutoyo ABSOLUTE Series) and optical
microscope (Olympus BX53M) to evaluate surface
finish, layer uniformity, and interlayer fusion. Thermal
characterization was conducted using differential
scanning calorimetry (DSC 214 Polyma, Netzsch) to
analyze crystallization behavior and determine whether
nanofillers induced nucleation effects relevant to
extrudability. Thermogravimetric analysis (TGA 209 F1,
Netzsch) was performed to assess material stability
during processing and identify degradation onset
temperatures. The rheological behavior of the
PLA/PHA-based nanocomposites plays a central
mechanistic role in governing FDM printability. At the
high shear rates experienced within the printer nozzle,
the observed shear-thinning behavior reduces melt
viscosity, enabling stable extrusion and minimizing
pressure fluctuations that lead to flow instabilities or
nozzle clogging. Upon deposition, the recovery of
viscosity and the presence of sufficient melt elasticity,
as indicated by the storage modulus, are critical for
maintaining filament shape, promoting interlayer
contact, and preventing sagging or dimensional
distortion. CNC reinforcement increases complex
viscosity and storage modulus through the formation of
a percolated nanofiller network and strong hydrogen
bonding with the PLA/PHA matrix, which enhances
melt strength and interlayer adhesion but can
adversely affect extrudability at excessive loadings. In
contrast, SiO, induces more moderate rheological
changes due to its spherical morphology and weaker
interfacial interactions, resulting in improved flow
consistency and higher tolerance to increased filler
content during printing. These mechanistic effects are
directly reflected in the machine learning
feature-importance analysis, where complex viscosity
and storage modulus emerge as influential predictors
of printability index and tensile strength. Their
contribution indicates that the ML model effectively

captures the balance between flowability during
extrusion and structural integrity after deposition two
competing requirements that define successful FDM
printing of biodegradable nanocomposites.
Morphological analysis using scanning electron
microscopy (SEM, JEOL JSM-IT500) was conducted to
confirm nanofiller dispersion quality and examine
fracture surfaces of tensile specimens, providing
mechanistic  insights into  the  strengthening
mechanisms observed. For the machine learning
dataset, each sample was encoded with formulation
parameters (PLA/PHA ratio, CNC wt%, SiO, wt%),
filament quality indicators (diameter deviation, MFI),
rheological parameters (complex viscosity, storage
modulus), and FDM process variables. The decision to
include both material-level and process-level features
was based on the hypothesis that printability and
mechanical performance are governed by complex,
nonlinear interactions that cannot be captured through
isolated parameter evaluation. The preparation of the
experimental dataset followed a structured DOE
methodology to ensure balanced representation of
variable combinations, reduce experimental bias, and
enhance ML model generalizability. Ultimately, the
methodology adopted ensures scientific rigor by
integrating standardized testing, precise material
processing, and advanced characterization techniques
to develop a dataset suitable for machine
learning-driven optimization of biodegradable polymer
nanocomposites for enhanced FDM printability and
mechanical performance.

2.1. Definition of Printability Index (PI)

To quantitatively evaluate the overall FDM print
quality of biodegradable polymer nanocomposites, a
composite printability index (Pl) was defined by
integrating  multiple  experimentally = measurable
indicators that collectively govern successful printing.
The PI incorporates dimensional accuracy (DA),
surface roughness (SR), interlayer adhesion quality
(IA), and extrusion stability (ES), each of which
captures a critical aspect of printability in material
extrusion processes.

Prior to aggregation, each parameter was
normalized to a dimensionless scale between 0 and 1
using min—max normalization to ensure comparability:

X Xi — Xmin
inorm ™ ¥1max — Xmin

The overall printability index was then calculated as
a weighted linear combination of the normalized
parameters:

Pl=w1(DA)+w2(1-SR)+w3(IA)+w4(ES)
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Where wqtwytwstw,=1. Based on their relative
importance to FDM part integrity, the weighting factors
were assigned as w4=0.30, w,=0, w3=0 and w,;=0.,
emphasizing dimensional accuracy and interlayer
adhesion as dominant contributors to print success.

Relatively lower viscosity increments
(approximately 8-12% per 1 wt% filler), suggesting
their superior dispersibility and weaker
hydrogen-bonding interactions compared to CNC.
These rheological trends directly influenced
extrudability during printing, where CNC loadings
above 2.0 wt% caused intermittent nozzle clogging and
increased surface roughness, whereas SiO,-reinforced
composites printed smoothly up to 3.0 wt% without
visible defects. Thermal analysis supported the
rheological observations such as DSC thermograms
showed an increase in crystallization temperature (Tc)
from 108.3 °C for neat PLA/PHA to 112.7 °C for 1.5
wt% CNC and 110.4 °C for 2.0 wt% SiO,, confirming
their respective nucleation effects. As illustrated in
Figure 1, the crystallization peak shifts toward higher

Heat Flow

temperatures for CNC- and SiO,-filled composites, with
the 1.5 wt% CNC sample showing the highest Tc
(112.7 °C), confirming its strong nucleation activity.
TGA revealed no significant thermal degradation below
260 °C for any formulation, validating the suitability of
selected FDM temperature ranges. As shown in Figure
2, all formulations maintained >95% weight retention
below 260 °C, indicating no significant thermal
degradation and validating the selected FDM
temperature range

The application of DOE-based process variation
produced a robust dataset of 270 printed samples,
representing combinations of five major FDM
parameters. The influence of nozzle temperature
showed a well-defined optimum around 205 °C, where
printability index (Pl) and tensile strength peaked
simultaneously. At lower temperatures (190-195 °C),
under-extrusion and poor layer bonding reduced Pl by
14-22% relative to the optimal condition. As shown in
Table 1, increasing nanofiller content from 1-5 wt%
resulted in a progressive enhancement of tensile

112.7°C
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Figure 1: Differential Scanning Calorimetry (DSC) thermograms of neat PLA/PHA and nanocomposite formulations with 1.0 wt%

CNC, 1.0 wt% SiO,, and 1.5 wt% CNC.
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Figure 2: Thermogravimetric Analysis (TGA) curves of neat PLA/PHA and nanocomposite formulations containing 1.0 wt% CNC,

1.0 wt% SiO,, and 1.5 wt% CNC.
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Tensile Strength vs Nozzle Temperature
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Figure 3: Tensile strength as a function of nozzle temperature for PLA/PHA-based nanocomposites fabricated via FDM. Error
bars represent + one standard deviation (n = 3).

Table 1: Mechanical Properties of PLA/IPHA-CNC and PLA/PHA-SiO, Nanocomposites

i . % Improvement vs Young’s Modulus Elongation at Break
0,

Composition (wt%) Tensile Strength (MPa) Neat Polymer (GPa) (%)
Neat PLA/PHA 42.3 — 1.86 4.8
0.5% CNC 48.7 +15.1% 2.06 4.2
1.0% CNC 52.1 +23.1% 2.19 4.0
1.5% CNC 53.9 +27.4% 2.26 3.7
2.0% SiO, 47.3 +11.8% 2.09 4.3

Table 2: Printability Index (PI) as a Function of FDM Process Parameters

Parameter Levels Tested Pl Value Observation
Nozzle Temperature (°C) 190-215 0.68-0.89 Optimal Pl at 205°C
Bed Temperature (°C) 50-70 0.72-0.86 Peak Pl at 60°C
Infill Density (%) 60-100 0.63-0.88 Higher infill improves PI
Layer Height (mm) 0.10-0.20 0.71-0.89 0.10 mm gives highest PI
Raster Angle (°) 0-45 0.74-0.85 0° angle gives best adhesion

strength, thermal stability, and stiffness of the
biodegradable nanocomposites.

At higher temperatures (215 °C), strength
decreased by 8-11% due to over-melting and
increased thermal degradation. Bed temperature
exhibited a smaller but meaningful effect: 60 °C
minimized warpage and produced dimensional
deviations under 1.2%, whereas lower temperatures
resulted in edge lifting in 18% of samples. Variation in
infill density produced expected mechanical trends:
moving from 60% to 100% infill improved tensile
strength by 26.4% on average but increased printing
time by approximately 43%. Raster angle strongly
affected anisotropy; samples printed at 0° displayed
maximum tensile strength aligned with the load
direction, whereas 45° raster patterns produced more

isotropic but slightly weaker specimens (average drop
of 9.4%). Layer height demonstrated the largest impact
on Pl: 0.1 mm layers produced smoother surfaces and
better interlayer fusion, increasing Pl by nearly 18%
compared to 0.2 mm, though the latter remained
advantageous for shorter build times. Figure 3 shows
the effect of nozzle temperature on the tensile strength
of biodegradable polymer nanocomposite specimens
fabricated via FDM. Tensile strength increased steadily
from 38 MPa at 190°C to a maximum of 49 MPa at
220°C, beyond which a decline to 47 MPa was
observed at 230°C, indicating polymer degradation at
excessively high melt temperatures. The influence of
layer height, nozzle temperature, and print speed on
printability indicators is detailed in Table 2,
demonstrating clear parameter—property relationships
essential for optimization.
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Figure 4: Effect of layer height on surface roughness of printed specimens. Error bars indicate standard deviation from three
independent measurements.

Table 3: Comparison of ML Model Performance for Strength and Printability Prediction

ML Model Tensile Strength R? Pl R? RMSE (MPa) RMSE (PI Units) Rank
XGBoost 0.96 0.94 1.74 0.053 1
Random Forest 0.91 0.89 2.93 0.081 2
ANN 0.88 0.87 3.48 0.094 3

Figure 4 illustrates the influence of layer height on
resulting surface roughness. The roughness increased
from 6.2 ym at 0.10 mm to 11.4 ym at 0.25 mm,
demonstrating the inverse relationship between layer
thickness and surface quality due to increased
stair-stepping effects. The mechanical testing results
validated the reinforcing efficacy of both CNC and SiO,,
though their impact mechanisms differed. For
CNC-reinforced composites, tensile strength improved
from 42.3 MPa for neat PLA/PHA to 48.7 MPa, 52.1
MPa, and 53.9 MPa at 0.5 wt%, 1.0 wt%, and 1.5 wt%,
respectively. Beyond 1.5 wit%, strength gains
plateaued and eventually decreased due to
agglomeration-induced stress concentrations. SiO,
additions produced more moderate improvements:
5.2% at 1.0 wt% and up to 11.8% at 2.0 wt%, reaching
a maximum tensile strength of 47.3 MPa. Young’s
modulus followed similar trends, with CNC providing
higher stiffness increases (up to 21.4% at 1.5 wt%)
compared to SiO, (up to 12.6% at 2.0 wt%). Elongation
at break improved with PHA modification but
decreased at higher filler loadings, indicating limited
ductility contributed by nanofillers. Morphological
analysis of fracture surfaces via SEM confirmed
stronger interlayer adhesion in CNC composites, where
well-dispersed whiskers facilitated crack bridging and
energy dissipation. As observed in Figure 5, CNC-filled
composites exhibit significantly rougher fracture
surfaces with clear evidence of whisker pull-out and
crack bridging, confirming stronger interlayer adhesion
and enhanced energy dissipation compared to neat

PLA/PHA. SiO, particles contributed primarily through
interfacial stiffening but displayed minor clustering at
higher loadings above 2.5 wt%. Model accuracy and
predictive stability achieved using Random Forest,
SVR, and XGBoost are summarized in Table 3,
confirming that XGBoost provided the highest
prediction reliability for both tensile and flexural
responses.

The machine learning models built on this
experimental dataset achieved high predictive
accuracy for both tensile strength and printability,
demonstrating the effectiveness of combining material
and process variables within a single predictive system.
Among the trained models, XGBoost achieved the
highest R? scores—0.96 for tensile strength and 0.94
for Pl—outperforming Random Forest (0.91 and 0.89)
and ANN (0.88 and 0.87). Root mean square error
(RMSE) for XGBoost predictions was exceptionally
low: 1.74 MPa for tensile strength and 0.053 units for P,
indicating reliable generalization across the test
dataset. Feature importance analysis revealed that
nozzle temperature contributed the highest importance
score (0.19), followed by CNC content (0.17), infill
density (0.14), raster angle (0.11), and layer height
(0.09). Rheological features such as complex viscosity
and storage modulus also exhibited significant
importance (0.07 and 0.05), underscoring their
mechanistic influence on extrudability and interlayer
fusion. SiO, concentration had a lower but
non-negligible contribution (0.04), consistent with its
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Neat PLA/PHA

1.0 wt% SiO;

10um

1.0 wi% CNC

1.5 wt% CNC

10 um

Figure 5: Scanning Electron Microscopy (SEM) images of fracture surfaces for neat PLA/PHA, 1.0 wt% CNC, 1.0 wt% SiO,, and

1.5 wt% CNC nanocomposites.

moderate reinforcing behavior. The model learned
subtle nonlinear interactions, for instance, CNC
effectiveness was strongest at intermediate nozzle
temperatures  (200-205 °C), whereas SiO,
reinforcement remained comparatively insensitive to
temperature, revealing unique material-process
coupling behaviors.

Figure 6 presents the variation in FDM energy
consumption with respect to print speed. Energy usage
decreased from 142 Wh at 40 mm/s to 125 Wh at 80
mm/s, indicating reduced dwell time and heater
operational duration at higher speeds. The XGBoost
optimization routine identified the best-performing
formulation as PLA/PHA with 1.5 wt% CNC printed at
205 °C nozzle temperature, 60 °C bed temperature, 0.1
mm layer height, 100% infill density, and 0° raster
angle. Experimental validation of this optimized
condition yielded a tensile strength of 54.1 MPa, which
closely matched the ML-predicted value of 53.6 MPa
(prediction error 0.93%). The printability index achieved
under these settings was 0.89, compared to the

predicted 0.86 (error 3.5%), confirming the robustness
of the ML model. In comparison, the baseline PLA/PHA
with standard printing conditions (200 °C nozzle, 50%
infill, 0.2 mm layer height) exhibited a PI of 0.74 and
tensile strength of 44.0 MPa, indicating relative
improvements of 17.4% and 22.8%, respectively. The
SiO,-optimized formulation (2.0 wt% SiO,, 205 °C
nozzle temperature) achieved a Pl improvement of
12.2% and tensile strength enhancement of 10.8%
versus baseline. These findings demonstrate that
ML-guided optimization effectively identifies balanced
conditions where both printability and mechanical
performance peak simultaneously,  minimizing
trade-offs typically faced in process tuning. Figure 7
displays the impact of bed temperature on dimensional
accuracy. Accuracy improved from 92.1% at 50°C to a
peak of 96.2% at 65°C, followed by a slight drop at
70°C, likely due to thermal expansion and warpage.

Figure 8 presents the combined AHP-TOPSIS
optimization scores for five FDM parameter sets.
Parameter Set 4 achieved the highest score (0.812),

Energy Consumption vs Print Speed

1425

1400

-
w
~
w

1350

1325

Energy Consumption (Wh)

-
w
o
o

1275

1250

e

40 45 50 55

Figure 6: Energy Consumption vs Print Speed.

60
Print Speed (mmys)

65 70 75 80



148 Journal of Composites and Biodegradable Polymers, 2025, Vol. 13

Subramani et al.

Dimensional Accuracy vs Bed Temperature
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confirming it as the optimal condition for balancing
strength, accuracy, roughness, and energy efficiency.
Comparison of experimental versus ML-predicted
results across all compositions revealed consistent
agreement, with >93% of all predictions falling within
experimental confidence intervals. Further validation
was conducted by training the XGBoost model on 80%
of the dataset and testing on the remaining 20%,
followed by 10-fold cross-validation, which yielded an
average CV accuracy of 0.94 for tensile strength and
0.91 for PI. This statistical robustness confirms that the
selected features and DOE-based data coverage were
adequate for ML model generalization. Additionally,
out-of-distribution testing using samples with previously
unseen filler combinations (e.g., 0.75 wt% CNC + 1.0
wt% SiO, hybrid) produced acceptable prediction
errors (4.1-6.3%), demonstrating the model’s ability to
extrapolate material-process interactions beyond the
training space.

The comparative study between CNC and SiO,
reinforced systems revealed that CNC provided
superior mechanical reinforcement and adhesion
enhancement due to its rod-like morphology and strong
interfacial bonding with PLA/PHA. In contrast, SiO,

" i i . "
3.0 35 40 45 5.0
Parameter Set

contributed primarily through filler-matrix stiffening but
displayed weaker interlayer integration. However, SiO,
composites exhibited better printability at higher filler
loadings, suggesting they are more suitable when
smooth extrusion and minimal nozzle clogging are
critical. ML feature interactions supported this
differentiation CNC effectiveness showed strong
cross-interactions with layer height and nozzle
temperature, while SiO, interacted more with raster
orientation and infill density. This highlights the ability
of ML to capture material-specific process sensitivities
that would be difficult to quantify through conventional
empirical testing alone. The comparison between
experimental values and ML-predicted outputs,
presented in Table 4, shows strong convergence,
validating the model’s capacity for reliable property
prediction. The complex viscosity profile shown in
Figure 9 illustrates the rheological response of the
material under varying shear conditions. At lower shear
rates, the polymer exhibits significantly higher viscosity,
which is typical of entangled or highly structured melts.
As the shear rate increases, the material transitions
into a shear-thinning regime where molecular
alignment facilitates easier flow, resulting in a marked
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Table 4: Feature Importance Scores from the XGBoost Model

Feature Importance Score Effect on FDM Behavior
Nozzle Temperature 0.19 Controls interlayer bonding and melt flow
CNC Loading 0.17 Strongly influences strength and viscosity
Infill Density 0.14 Affects structural stiffness and Pl
Raster Angle 0.1 Governs anisotropy and crack-path behavior
Layer Height 0.09 Directly controls Pl and surface finish
Viscosity 0.07 Influences extrusion stability
Storage Modulus 0.05 Reflects melt elasticity
SiO, Loading 0.04 Contributes moderate reinforcement

reduction in complex viscosity. This behavior is
advantageous in processes like FDM, where reduced
viscosity at operational shear rates enhances
extrudability while maintaining adequate melt strength
for layer deposition.

Neat PLA/PHA

—— PLA/PHA 1.5w CNC
— PLA/PHA 1.0 w, SiO;
— PLA/PHA 1.5w, CNC

0 20 40 60 80 100
Angular shear rate (1/s)

1000+

Complex viscosity (Pa-s)
5

Figure 9: Complex viscosity (n) as a function of shear rate (or
angular frequency), showing the characteristic shear-thinning
behavior of the polymer melt.

Overall, the combined experimental, comparative,
and validation results clearly demonstrate that machine
learning-driven optimization is an effective strategy for
enhancing the printability and strength  of
biodegradable polymer nanocomposites. The synergy
between DOE-generated data, rigorous material
characterization, and advanced ML modeling enabled
precise prediction and optimization of composite
behavior, establishing a scalable framework for
intelligent biodegradable composite design.

4. CONCLUSION

This study successfully demonstrated a machine
learning-driven optimization framework for improving
the FDM printability and mechanical performance of
biodegradable polymer nanocomposites based on
PLA/PHA reinforced with CNC and SiO, nanofillers.
The experimental results established that CNC

provided superior mechanical reinforcement, achieving
a maximum tensile strength of 54.1 MPa at 1.5 wt%,
representing a 22.8% improvement over baseline
PLA/PHA. SiO, offered moderate  strength
enhancement but exhibited superior extrudability at
higher loadings. Rheological and thermal analyses
confirmed that nanofillers influenced melt behavior and
crystallization, which in turn governed print quality and
interlayer bonding. While the present study
demonstrates the strong potential of machine learning
to accelerate the optimization of biodegradable
polymer nanocomposites for FDM, it is important to
acknowledge practical limitations associated with
real-world implementation. The predictive performance
of ML models is inherently dependent on the quality,
diversity, and representativeness of the experimental
dataset, and model generalizability may be affected by
printer-to-printer variability, hardware-specific thermal
control, and environmental conditions. Additionally,
scaling such frameworks from laboratory-scale
experimentation to industrial manufacturing requires
the incorporation of larger, multi-source datasets and
standardized calibration protocols. Consequently,
machine learning should be regarded as a powerful
decision-support tool that complements experimental
insight rather than a universal replacement for process
expertise. Future efforts integrating multi-printer data,
in-situ sensing, and closed-loop control strategies will
be essential to fully realize the practical impact of
ML-driven optimization in sustainable additive
manufacturing.
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