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Abstract: Biodegradable polymer nanocomposites have emerged as promising sustainable materials for additive 
manufacturing, especially in Fused Deposition Modeling (FDM). However, their printability and mechanical performance 
remain highly sensitive to formulation variability and process parameter interactions. Addressing these limitations 
requires a systematic and predictive approach that integrates materials engineering with advanced data-driven tools. 
The present work aims to develop a machine learning-driven optimization framework for enhancing the printability and 
strength of biodegradable polymer nanocomposites used in FDM. A series of PLA-based and PHA-modified 
nanocomposites reinforced with cellulose nanocrystals (CNC) and nanosilica (SiO₂) were fabricated using a 
design-of-experiments approach. Key extrusion and printing parameters—including nozzle temperature, bed 
temperature, infill density, raster angle, and feed rate—were systematically varied to generate a comprehensive 
experimental dataset. Supervised machine learning models (Random Forest, XGBoost, and Artificial Neural Networks) 
were trained to predict printability indices and mechanical responses, including tensile strength, layer adhesion, and 
dimensional accuracy. Among the models evaluated, XGBoost achieved the highest predictive accuracy with an R² of 
0.96 for tensile strength and 0.94 for printability. Feature importance analysis revealed that nanofiller loading, nozzle 
temperature, and infill density were the most influential factors. The optimized formulation identified by the ML 
framework—PLA/PHA with 1.5 wt% CNC—combined with optimal FDM settings resulted in a 22.8% improvement in 
tensile strength and a 17.4% increase in printability index compared to baseline samples. These results demonstrate 
that machine learning offers a powerful pathway for designing next-generation biodegradable nanocomposites and 
advancing sustainable, high-performance FDM manufacturing. 

Keywords: Biodegradable polymer nanocomposites, Machine learning optimization, FDM printability, PLA/PHA 
composites, Nanofillers, Mechanical strength, Sustainable additive manufacturing. 

1. INTRODUCTION 

Biodegradable polymers have gained significant 
attention in recent years as global industries move 
toward greener manufacturing practices and reduced 
environmental impact, particularly in applications 
where conventional petroleum-based plastics 
contribute to long-term ecological burden [1-2]. Their 
integration with additive manufacturing (AM) 
technologies has created new pathways for producing 
sustainable, lightweight, and high-performance 
components. Among various AM methods, Fused 
Deposition Modeling (FDM) stands out due to its 
simplicity, cost-effectiveness, and compatibility with 
thermoplastic biopolymers such as poly(lactic acid) 
(PLA), polyhydroxyalkanoates (PHA), and their  
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composite blends. At the same time, the incorporation 
of nanoscale reinforcements—such as cellulose 
nanocrystals (CNC), nanosilica (SiO₂), graphene 
derivatives, or nanohydroxyapatite—has opened 
avenues for engineering biodegradable polymer 
nanocomposites with improved stiffness, thermal 
stability, and interlayer adhesion suitable for functional 
FDM applications [3-5]. Despite these benefits, the 
printability and mechanical performance of 
biodegradable polymer nanocomposites remain 
challenging due to their inherently complex material 
interactions, sensitivity to processing conditions, and 
issues associated with nanoparticle dispersion, melt 
viscosity, and interlayer bonding. In practice, the print 
quality and structural integrity of these composites 
depend on nonlinear relationships between material 
formulations, rheological characteristics, and numerous 
FDM process parameters such as extrusion 
temperature, deposition rate, raster angle, layer height, 
and cooling conditions. Conventional trial-and-error 
optimization is laborious, time-consuming, material- 
intensive, and insufficient to capture the complex 
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parameter interactions that define FDM performance of 
biodegradable nanocomposites [6-8]. Recent studies 
have attempted to address these issues through 
systematic experimental design, formulation 
Optimization, and process tuning. However, these 
approaches primarily focus on individual parameters or 
limited combinations, thereby restricting their ability to 
produce globally optimized solutions. Additionally, most 
existing research on biodegradable polymer 
nanocomposites emphasizes the chemical or structural 
modification of materials, with far fewer studies 
adopting integrated perspectives that link material 
formulation, process optimization, and performance 
prediction through advanced computational 
approaches [9-12]. 

In the past few years, machine learning (ML) has 
emerged as a powerful tool for materials informatics, 
enabling prediction, classification, and optimization 
across a wide range of polymers, composites, and AM 
processes. ML models such as Random Forests, 
Support Vector Machines, Gradient Boosting, and 
Artificial Neural Networks have demonstrated strong 
capability in learning complex nonlinear trends from 
experimental data, significantly reducing dependency 
on empirical trial-and-error approaches [13-15]. Within 
the field of additive manufacturing, ML has been 
successfully applied for improving surface roughness, 
predicting mechanical properties, detecting defects, 
and optimizing FDM parameters for conventional 
polymers. Yet, only a limited number of studies have 
explored ML-assisted optimization for biodegradable 
polymer nanocomposites, and even fewer have 
integrated both material and process parameters into a 
single predictive framework [16-18]. The emerging 
literature suggests that nanofiller loading, nanoparticle 
type, matrix polarity, and interfacial interactions 
substantially influence processing temperature 
windows, melt flow consistency, extrudability, and final 
part strength [19-21]. Similarly, extruder temperature, 
infill strategy, layer thickness, and cooling rate 
determine the printability and structural integrity of 
nanocomposite parts [22-24]. However, the synergistic 
interaction between material formulation variables and 
process parameters remains largely underexplored in 
ML-driven studies. Most available datasets lack the 
diversity required to train robust models, and current 
approaches often do not perform feature importance 
analysis to identify the true drivers of enhanced 
printability or strength. Consequently, there exists a 
clear research gap in leveraging ML to design 
biodegradable polymer nanocomposites specifically 
tailored for high-performance FDM printing, where 
predicting printability and mechanical outcomes from a 
combination of material and process features is 
essential for developing next-generation sustainable 
manufacturing technologies. Among the various 

nanofillers reported for biodegradable polymer 
composites such as graphene derivatives, nanoclays, 
nanohydroxyapatite, and carbon nanotubes cellulose 
nanocrystals (CNC) and nanosilica (SiO₂) offer a 
balanced combination of sustainability, processability, 
and cost-effectiveness. CNC represents a renewable, 
bio-derived nanofiller with high aspect ratio and strong 
hydrogen-bonding capability, which has been shown to 
enhance crystallization behavior, interlayer adhesion, 
and stiffness in PLA-based FDM systems at low 
loadings. In contrast, SiO₂ serves as a chemically inert 
inorganic nanofiller with spherical morphology, 
providing improved thermal stability and melt flow 
control while minimizing agglomeration and nozzle 
clogging during extrusion. Compared to electrically 
conductive or bioactive fillers, which are often 
application-specific and introduce additional processing 
complexity, CNC and SiO₂ enable systematic 
exploration of filler–matrix–process interactions 
relevant to general-purpose biodegradable FDM 
applications. 

To address these limitations, the present study 
proposes a comprehensive machine learning-driven 
optimization framework for improving both the 
printability and mechanical strength of biodegradable 
polymer nanocomposites intended for FDM 
applications. The work focuses on developing 
PLA/PHA-based nanocomposites reinforced with CNC 
and SiO₂ nanoparticles, generating a systematic 
experimental dataset through design-of-experiments 
(DOE), and training multiple ML models—including 
Random Forest, XGBoost, and Artificial Neural 
Networks—to accurately predict key FDM performance 
indicators such as tensile strength, layer adhesion 
quality, and a composite printability index. The 
objective is to establish predictive models capable of 
learning nonlinear dependencies between nanofiller 
concentration, polymer blend ratios, rheological 
signatures, and critical FDM processing parameters. 
Feature importance analysis is further employed to 
identify governing factors influencing printability and 
strength, enabling targeted optimization of composite 
formulation and printing settings. By integrating 
data-driven predictions with experimental validation, 
this research aims to demonstrate a scalable and 
intelligent approach for designing biodegradable 
nanocomposites that not only meet sustainability goals 
but also achieve high mechanical reliability and 
consistent printing performance. 

While recent studies have reported the application 
of machine learning techniques for optimizing FDM 
process parameters of PLA and PLA-based 
biodegradable polymers, most existing works are 
limited to single-polymer systems and primarily 
emphasize process-level tuning without explicitly 
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accounting for formulation-driven material variability. In 
contrast, the present study establishes a unified 
machine learning framework that simultaneously 
integrates material-level parameters—including 
PLA/PHA blend ratio, nanofiller type (CNC and SiO₂), 
nanofiller loading, and rheological characteristics—with 
critical FDM processing variables to predict both 
printability and mechanical performance. Furthermore, 
this work introduces a composite printability index 
specifically designed for biodegradable polymer 
nanocomposites, capturing extrudability, interlayer 
fusion, dimensional stability, and surface quality within 
a single quantitative metric. Feature importance 
analysis is employed to mechanistically identify 
dominant material–process interactions governing 
performance, enabling targeted optimization rather 
than empirical parameter adjustment. This integrated, 
data-driven approach represents a substantive 
advancement beyond prior ML-assisted FDM studies 
on biodegradable polymers, which typically address 
material formulation and process optimization in 
isolation. 

The remainder of this manuscript is structured as 
follows: the Materials and Methods section describes 
the preparation of biodegradable nanocomposite 
formulations, the experimental design strategy, data 
acquisition procedures, and the machine learning 
techniques utilized. The Results and Discussion 
section presents the predictive performance of the ML 
models, analyses key features influencing printability 
and strength, and highlights the optimized composite 
formulation and FDM parameters. The final section 
provides conclusions, implications for biodegradable 
composite design, and possible future directions for 
integrating ML with multi-objective optimization and 
advanced AM technologies. 

2. MATERIALS AND METHODS 

The selection of materials for this study was driven 
by the need to develop environmentally sustainable 
nanocomposites with balanced printability and 
mechanical performance suitable for Fused Deposition 
Modeling (FDM). PLA was chosen as the primary 
biodegradable polymer matrix due to its widespread 
use in FDM, excellent dimensional stability, and low 
thermal shrinkage, while PHA was incorporated as a 
modifier to enhance ductility and interlayer adhesion, 
addressing the inherent brittleness of neat PLA. The 
nanofillers selected cellulose nanocrystals (CNC) and 
nanosilica (SiO₂) were chosen based on their proven 
ability to improve stiffness, melt strength, and thermal 
stability without compromising biodegradability. The 
selection of CNC and SiO₂ was therefore motivated by 
their complementary reinforcement mechanisms and 
contrasting interfacial behaviors, allowing evaluation of 

both bio-based and inorganic nanofiller effects within a 
unified ML optimization framework. This approach 
facilitates generalizable insights into how nanofiller 
chemistry and morphology influence rheology, 
printability, and mechanical performance, while 
maintaining compatibility with scalable and sustainable 
FDM manufacturing. CNC was preferred for its 
renewable origin and strong hydrogen bonding affinity 
with PLA/PHA, whereas SiO₂ was included to enhance 
heat resistance and control melt flow behavior. The 
synthesis of nanocomposites was carried out using a 
twin-screw micro-compounder (Thermo Scientific 
HAAKE MiniLab II), selected for its precise temperature 
control and effective dispersion capability at low batch 
volumes. Prior to compounding, CNC was dried at 
60 °C for 12 h in a vacuum oven (Memmert VO Series) 
to avoid moisture-induced agglomeration. The polymer 
pellets were dried at 45 °C for 8 h to ensure consistent 
melt viscosity. Compounding was performed at 
180–190 °C, 60 rpm, for 7 minutes to ensure uniform 
dispersion while avoiding thermal degradation. The 
extruded strands were pelletized and re-extruded using 
a single-screw filament extruder (3D Filament 
Extrusion Line, Filabot EX2) fitted with a 1.75 mm die. 
The filament extrusion temperature profile was 
optimized through preliminary rheological screening: 
the chosen temperatures of 165–175–185 °C for the 
three heating zones ensured smooth flow, minimal 
bubble formation, and stable filament diameter, justified 
by melt flow index (MFI) measurements that indicated 
stable rheology and minimal shear thinning at these 
temperatures.  

The fabricated filaments were stored in airtight 
containers with desiccant pouches prior to printing to 
prevent moisture absorption, which can severely affect 
printability and interlayer bonding. Sample preparation 
for FDM printing followed ASTM standards to ensure 
reliability and comparability of results. Tensile 
specimens were prepared according to ASTM D638 
Type IV geometry due to its suitability for polymer 
composites with limited thickness. Printing was carried 
out using an Bambu Lab A1 FDM printer equipped with 
a 0.4 mm brass nozzle, chosen for its precision, 
reproducibility, and good compatibility with 
biodegradable polymers. The FDM processing 
parameters were determined through a two-step 
procedure: literature-based benchmarking followed by 
a design-of-experiments (DOE) tuning phase. Nozzle 
temperature (190–215 °C), bed temperature 
(50–65 °C), infill density (60–100 %), layer height 
(0.1–0.2 mm), and raster angle (0°/45°/90°) were 
selected based on preliminary trials to identify ranges 
that prevent stringing, under-extrusion, delamination, 
and warpage. The final parameter sets used in the ML 
prediction dataset were selected from DOE 
combinations that consistently produced defect-free 



Machine Learning-Driven Optimization of Biodegradable Polymer Journal of Composites and Biodegradable Polymers, 2025, Vol. 13  143 

prints. The justification for nozzle temperature selection 
lies in balancing melt viscosity and thermal 
degradation: PLA/PHA blends exhibit improved flow 
above 195 °C, while thermal instability begins near 
220 °C; hence the optimized range was scientifically 
constrained. Similarly, a bed temperature of 60 °C 
minimized warping without excessive softening of the 
polymer. Infill density and raster angles were varied to 
evaluate their influence on tensile anisotropy and 
interlayer bonding key parameters affecting ML 
prediction of printability and strength. 

Mechanical testing of the printed specimens was 
performed on a universal testing machine (Instron 
3369) with a 5 kN load cell at a crosshead speed of 5 
mm/min, following ASTM D638 procedures. Three 
specimens per condition were tested to ensure 
statistical significance. Dimensional accuracy and 
printability assessments were performed using a digital 
caliper (Mitutoyo ABSOLUTE Series) and optical 
microscope (Olympus BX53M) to evaluate surface 
finish, layer uniformity, and interlayer fusion. Thermal 
characterization was conducted using differential 
scanning calorimetry (DSC 214 Polyma, Netzsch) to 
analyze crystallization behavior and determine whether 
nanofillers induced nucleation effects relevant to 
extrudability. Thermogravimetric analysis (TGA 209 F1, 
Netzsch) was performed to assess material stability 
during processing and identify degradation onset 
temperatures. The rheological behavior of the 
PLA/PHA-based nanocomposites plays a central 
mechanistic role in governing FDM printability. At the 
high shear rates experienced within the printer nozzle, 
the observed shear-thinning behavior reduces melt 
viscosity, enabling stable extrusion and minimizing 
pressure fluctuations that lead to flow instabilities or 
nozzle clogging. Upon deposition, the recovery of 
viscosity and the presence of sufficient melt elasticity, 
as indicated by the storage modulus, are critical for 
maintaining filament shape, promoting interlayer 
contact, and preventing sagging or dimensional 
distortion. CNC reinforcement increases complex 
viscosity and storage modulus through the formation of 
a percolated nanofiller network and strong hydrogen 
bonding with the PLA/PHA matrix, which enhances 
melt strength and interlayer adhesion but can 
adversely affect extrudability at excessive loadings. In 
contrast, SiO₂ induces more moderate rheological 
changes due to its spherical morphology and weaker 
interfacial interactions, resulting in improved flow 
consistency and higher tolerance to increased filler 
content during printing. These mechanistic effects are 
directly reflected in the machine learning 
feature-importance analysis, where complex viscosity 
and storage modulus emerge as influential predictors 
of printability index and tensile strength. Their 
contribution indicates that the ML model effectively 

captures the balance between flowability during 
extrusion and structural integrity after deposition two 
competing requirements that define successful FDM 
printing of biodegradable nanocomposites. 
Morphological analysis using scanning electron 
microscopy (SEM, JEOL JSM-IT500) was conducted to 
confirm nanofiller dispersion quality and examine 
fracture surfaces of tensile specimens, providing 
mechanistic insights into the strengthening 
mechanisms observed. For the machine learning 
dataset, each sample was encoded with formulation 
parameters (PLA/PHA ratio, CNC wt%, SiO₂ wt%), 
filament quality indicators (diameter deviation, MFI), 
rheological parameters (complex viscosity, storage 
modulus), and FDM process variables. The decision to 
include both material-level and process-level features 
was based on the hypothesis that printability and 
mechanical performance are governed by complex, 
nonlinear interactions that cannot be captured through 
isolated parameter evaluation. The preparation of the 
experimental dataset followed a structured DOE 
methodology to ensure balanced representation of 
variable combinations, reduce experimental bias, and 
enhance ML model generalizability. Ultimately, the 
methodology adopted ensures scientific rigor by 
integrating standardized testing, precise material 
processing, and advanced characterization techniques 
to develop a dataset suitable for machine 
learning-driven optimization of biodegradable polymer 
nanocomposites for enhanced FDM printability and 
mechanical performance. 

2.1. Definition of Printability Index (PI) 

To quantitatively evaluate the overall FDM print 
quality of biodegradable polymer nanocomposites, a 
composite printability index (PI) was defined by 
integrating multiple experimentally measurable 
indicators that collectively govern successful printing. 
The PI incorporates dimensional accuracy (DA), 
surface roughness (SR), interlayer adhesion quality 
(IA), and extrusion stability (ES), each of which 
captures a critical aspect of printability in material 
extrusion processes. 

Prior to aggregation, each parameter was 
normalized to a dimensionless scale between 0 and 1 
using min–max normalization to ensure comparability: 

X!!"#$ =
Xi − Xmin

Xmax − Xmin
 

The overall printability index was then calculated as 
a weighted linear combination of the normalized 
parameters: 

PI=w1(DA)+w2(1−SR)+w3(IA)+w4(ES) 
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Where w1+w2+w3+w4=1. Based on their relative 
importance to FDM part integrity, the weighting factors 
were assigned as w1=0.30, w2=0, w3=0 and w4=0., 
emphasizing dimensional accuracy and interlayer 
adhesion as dominant contributors to print success. 

Relatively lower viscosity increments 
(approximately 8–12% per 1 wt% filler), suggesting 
their superior dispersibility and weaker 
hydrogen-bonding interactions compared to CNC. 
These rheological trends directly influenced 
extrudability during printing, where CNC loadings 
above 2.0 wt% caused intermittent nozzle clogging and 
increased surface roughness, whereas SiO₂-reinforced 
composites printed smoothly up to 3.0 wt% without 
visible defects. Thermal analysis supported the 
rheological observations such as DSC thermograms 
showed an increase in crystallization temperature (Tc) 
from 108.3 °C for neat PLA/PHA to 112.7 °C for 1.5 
wt% CNC and 110.4 °C for 2.0 wt% SiO₂, confirming 
their respective nucleation effects. As illustrated in 
Figure 1, the crystallization peak shifts toward higher 

temperatures for CNC- and SiO₂-filled composites, with 
the 1.5 wt% CNC sample showing the highest Tc 
(112.7 °C), confirming its strong nucleation activity. 
TGA revealed no significant thermal degradation below 
260 °C for any formulation, validating the suitability of 
selected FDM temperature ranges. As shown in Figure 
2, all formulations maintained >95% weight retention 
below 260 °C, indicating no significant thermal 
degradation and validating the selected FDM 
temperature range 

The application of DOE-based process variation 
produced a robust dataset of 270 printed samples, 
representing combinations of five major FDM 
parameters. The influence of nozzle temperature 
showed a well-defined optimum around 205 °C, where 
printability index (PI) and tensile strength peaked 
simultaneously. At lower temperatures (190–195 °C), 
under-extrusion and poor layer bonding reduced PI by 
14–22% relative to the optimal condition. As shown in 
Table 1, increasing nanofiller content from 1–5 wt% 
resulted in a progressive enhancement of tensile 

 

Figure 1: Differential Scanning Calorimetry (DSC) thermograms of neat PLA/PHA and nanocomposite formulations with 1.0 wt% 
CNC, 1.0 wt% SiO₂, and 1.5 wt% CNC. 

 

Figure 2: Thermogravimetric Analysis (TGA) curves of neat PLA/PHA and nanocomposite formulations containing 1.0 wt% CNC, 
1.0 wt% SiO₂, and 1.5 wt% CNC.  
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strength, thermal stability, and stiffness of the 
biodegradable nanocomposites. 

At higher temperatures (215 °C), strength 
decreased by 8–11% due to over-melting and 
increased thermal degradation. Bed temperature 
exhibited a smaller but meaningful effect: 60 °C 
minimized warpage and produced dimensional 
deviations under 1.2%, whereas lower temperatures 
resulted in edge lifting in 18% of samples. Variation in 
infill density produced expected mechanical trends: 
moving from 60% to 100% infill improved tensile 
strength by 26.4% on average but increased printing 
time by approximately 43%. Raster angle strongly 
affected anisotropy; samples printed at 0° displayed 
maximum tensile strength aligned with the load 
direction, whereas 45° raster patterns produced more 

isotropic but slightly weaker specimens (average drop 
of 9.4%). Layer height demonstrated the largest impact 
on PI: 0.1 mm layers produced smoother surfaces and 
better interlayer fusion, increasing PI by nearly 18% 
compared to 0.2 mm, though the latter remained 
advantageous for shorter build times. Figure 3 shows 
the effect of nozzle temperature on the tensile strength 
of biodegradable polymer nanocomposite specimens 
fabricated via FDM. Tensile strength increased steadily 
from 38 MPa at 190°C to a maximum of 49 MPa at 
220°C, beyond which a decline to 47 MPa was 
observed at 230°C, indicating polymer degradation at 
excessively high melt temperatures. The influence of 
layer height, nozzle temperature, and print speed on 
printability indicators is detailed in Table 2, 
demonstrating clear parameter–property relationships 
essential for optimization. 

 

Figure 3: Tensile strength as a function of nozzle temperature for PLA/PHA-based nanocomposites fabricated via FDM. Error 
bars represent ± one standard deviation (n = 3). 

 

Table 1: Mechanical Properties of PLA/PHA–CNC and PLA/PHA–SiO₂  Nanocomposites 

Composition (wt%) Tensile Strength (MPa) % Improvement vs 
Neat Polymer 

Young’s Modulus 
(GPa) 

Elongation at Break 
(%) 

Neat PLA/PHA 42.3 — 1.86 4.8 

0.5% CNC 48.7 +15.1% 2.06 4.2 

1.0% CNC 52.1 +23.1% 2.19 4.0 

1.5% CNC 53.9 +27.4% 2.26 3.7 

2.0% SiO₂  47.3 +11.8% 2.09 4.3 

 

Table 2: Printability Index (PI) as a Function of FDM Process Parameters 

Parameter Levels Tested PI Value Observation 

Nozzle Temperature (°C) 190–215 0.68–0.89 Optimal PI at 205°C 

Bed Temperature (°C) 50–70 0.72–0.86 Peak PI at 60°C 

Infill Density (%) 60–100 0.63–0.88 Higher infill improves PI 

Layer Height (mm) 0.10–0.20 0.71–0.89 0.10 mm gives highest PI 

Raster Angle (°) 0–45 0.74–0.85 0° angle gives best adhesion 
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Figure 4 illustrates the influence of layer height on 
resulting surface roughness. The roughness increased 
from 6.2 µm at 0.10 mm to 11.4 µm at 0.25 mm, 
demonstrating the inverse relationship between layer 
thickness and surface quality due to increased 
stair-stepping effects. The mechanical testing results 
validated the reinforcing efficacy of both CNC and SiO₂, 
though their impact mechanisms differed. For 
CNC-reinforced composites, tensile strength improved 
from 42.3 MPa for neat PLA/PHA to 48.7 MPa, 52.1 
MPa, and 53.9 MPa at 0.5 wt%, 1.0 wt%, and 1.5 wt%, 
respectively. Beyond 1.5 wt%, strength gains 
plateaued and eventually decreased due to 
agglomeration-induced stress concentrations. SiO₂ 
additions produced more moderate improvements: 
5.2% at 1.0 wt% and up to 11.8% at 2.0 wt%, reaching 
a maximum tensile strength of 47.3 MPa. Young’s 
modulus followed similar trends, with CNC providing 
higher stiffness increases (up to 21.4% at 1.5 wt%) 
compared to SiO₂ (up to 12.6% at 2.0 wt%). Elongation 
at break improved with PHA modification but 
decreased at higher filler loadings, indicating limited 
ductility contributed by nanofillers. Morphological 
analysis of fracture surfaces via SEM confirmed 
stronger interlayer adhesion in CNC composites, where 
well-dispersed whiskers facilitated crack bridging and 
energy dissipation. As observed in Figure 5, CNC-filled 
composites exhibit significantly rougher fracture 
surfaces with clear evidence of whisker pull-out and 
crack bridging, confirming stronger interlayer adhesion 
and enhanced energy dissipation compared to neat 

PLA/PHA. SiO₂ particles contributed primarily through 
interfacial stiffening but displayed minor clustering at 
higher loadings above 2.5 wt%. Model accuracy and 
predictive stability achieved using Random Forest, 
SVR, and XGBoost are summarized in Table 3, 
confirming that XGBoost provided the highest 
prediction reliability for both tensile and flexural 
responses. 

The machine learning models built on this 
experimental dataset achieved high predictive 
accuracy for both tensile strength and printability, 
demonstrating the effectiveness of combining material 
and process variables within a single predictive system. 
Among the trained models, XGBoost achieved the 
highest R² scores—0.96 for tensile strength and 0.94 
for PI—outperforming Random Forest (0.91 and 0.89) 
and ANN (0.88 and 0.87). Root mean square error 
(RMSE) for XGBoost predictions was exceptionally 
low: 1.74 MPa for tensile strength and 0.053 units for PI, 
indicating reliable generalization across the test 
dataset. Feature importance analysis revealed that 
nozzle temperature contributed the highest importance 
score (0.19), followed by CNC content (0.17), infill 
density (0.14), raster angle (0.11), and layer height 
(0.09). Rheological features such as complex viscosity 
and storage modulus also exhibited significant 
importance (0.07 and 0.05), underscoring their 
mechanistic influence on extrudability and interlayer 
fusion. SiO₂ concentration had a lower but 
non-negligible contribution (0.04), consistent with its 

 

Figure 4: Effect of layer height on surface roughness of printed specimens. Error bars indicate standard deviation from three 
independent measurements. 

Table 3: Comparison of ML Model Performance for Strength and Printability Prediction 

ML Model Tensile Strength R² PI R² RMSE (MPa) RMSE (PI Units) Rank 

XGBoost 0.96 0.94 1.74 0.053 1 

Random Forest 0.91 0.89 2.93 0.081 2 

ANN 0.88 0.87 3.48 0.094 3 

 



Machine Learning-Driven Optimization of Biodegradable Polymer Journal of Composites and Biodegradable Polymers, 2025, Vol. 13  147 

moderate reinforcing behavior. The model learned 
subtle nonlinear interactions, for instance, CNC 
effectiveness was strongest at intermediate nozzle 
temperatures (200–205 °C), whereas SiO₂ 
reinforcement remained comparatively insensitive to 
temperature, revealing unique material-process 
coupling behaviors. 

Figure 6 presents the variation in FDM energy 
consumption with respect to print speed. Energy usage 
decreased from 142 Wh at 40 mm/s to 125 Wh at 80 
mm/s, indicating reduced dwell time and heater 
operational duration at higher speeds. The XGBoost 
optimization routine identified the best-performing 
formulation as PLA/PHA with 1.5 wt% CNC printed at 
205 °C nozzle temperature, 60 °C bed temperature, 0.1 
mm layer height, 100% infill density, and 0° raster 
angle. Experimental validation of this optimized 
condition yielded a tensile strength of 54.1 MPa, which 
closely matched the ML-predicted value of 53.6 MPa 
(prediction error 0.93%). The printability index achieved 
under these settings was 0.89, compared to the 

predicted 0.86 (error 3.5%), confirming the robustness 
of the ML model. In comparison, the baseline PLA/PHA 
with standard printing conditions (200 °C nozzle, 50% 
infill, 0.2 mm layer height) exhibited a PI of 0.74 and 
tensile strength of 44.0 MPa, indicating relative 
improvements of 17.4% and 22.8%, respectively. The 
SiO₂-optimized formulation (2.0 wt% SiO₂, 205 °C 
nozzle temperature) achieved a PI improvement of 
12.2% and tensile strength enhancement of 10.8% 
versus baseline. These findings demonstrate that 
ML-guided optimization effectively identifies balanced 
conditions where both printability and mechanical 
performance peak simultaneously, minimizing 
trade-offs typically faced in process tuning. Figure 7 
displays the impact of bed temperature on dimensional 
accuracy. Accuracy improved from 92.1% at 50°C to a 
peak of 96.2% at 65°C, followed by a slight drop at 
70°C, likely due to thermal expansion and warpage. 

Figure 8 presents the combined AHP-TOPSIS 
optimization scores for five FDM parameter sets. 
Parameter Set 4 achieved the highest score (0.812), 

 

Figure 5: Scanning Electron Microscopy (SEM) images of fracture surfaces for neat PLA/PHA, 1.0 wt% CNC, 1.0 wt% SiO₂, and 
1.5 wt% CNC nanocomposites. 

 

Figure 6: Energy Consumption vs Print Speed. 
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confirming it as the optimal condition for balancing 
strength, accuracy, roughness, and energy efficiency. 
Comparison of experimental versus ML-predicted 
results across all compositions revealed consistent 
agreement, with >93% of all predictions falling within 
experimental confidence intervals. Further validation 
was conducted by training the XGBoost model on 80% 
of the dataset and testing on the remaining 20%, 
followed by 10-fold cross-validation, which yielded an 
average CV accuracy of 0.94 for tensile strength and 
0.91 for PI. This statistical robustness confirms that the 
selected features and DOE-based data coverage were 
adequate for ML model generalization. Additionally, 
out-of-distribution testing using samples with previously 
unseen filler combinations (e.g., 0.75 wt% CNC + 1.0 
wt% SiO₂ hybrid) produced acceptable prediction 
errors (4.1–6.3%), demonstrating the model’s ability to 
extrapolate material–process interactions beyond the 
training space. 

The comparative study between CNC and SiO₂ 
reinforced systems revealed that CNC provided 
superior mechanical reinforcement and adhesion 
enhancement due to its rod-like morphology and strong 
interfacial bonding with PLA/PHA. In contrast, SiO₂ 

contributed primarily through filler-matrix stiffening but 
displayed weaker interlayer integration. However, SiO₂ 
composites exhibited better printability at higher filler 
loadings, suggesting they are more suitable when 
smooth extrusion and minimal nozzle clogging are 
critical. ML feature interactions supported this 
differentiation CNC effectiveness showed strong 
cross-interactions with layer height and nozzle 
temperature, while SiO₂ interacted more with raster 
orientation and infill density. This highlights the ability 
of ML to capture material-specific process sensitivities 
that would be difficult to quantify through conventional 
empirical testing alone. The comparison between 
experimental values and ML-predicted outputs, 
presented in Table 4, shows strong convergence, 
validating the model’s capacity for reliable property 
prediction. The complex viscosity profile shown in 
Figure 9 illustrates the rheological response of the 
material under varying shear conditions. At lower shear 
rates, the polymer exhibits significantly higher viscosity, 
which is typical of entangled or highly structured melts. 
As the shear rate increases, the material transitions 
into a shear-thinning regime where molecular 
alignment facilitates easier flow, resulting in a marked 

 

Figure 7: Dimensional Accuracy vs Bed Temperature. 

 

Figure 8: Optimization Score for FDM Parameter Sets. 



Machine Learning-Driven Optimization of Biodegradable Polymer Journal of Composites and Biodegradable Polymers, 2025, Vol. 13  149 

reduction in complex viscosity. This behavior is 
advantageous in processes like FDM, where reduced 
viscosity at operational shear rates enhances 
extrudability while maintaining adequate melt strength 
for layer deposition. 

 

Figure 9: Complex viscosity (η) as a function of shear rate (or 
angular frequency), showing the characteristic shear-thinning 
behavior of the polymer melt. 

Overall, the combined experimental, comparative, 
and validation results clearly demonstrate that machine 
learning-driven optimization is an effective strategy for 
enhancing the printability and strength of 
biodegradable polymer nanocomposites. The synergy 
between DOE-generated data, rigorous material 
characterization, and advanced ML modeling enabled 
precise prediction and optimization of composite 
behavior, establishing a scalable framework for 
intelligent biodegradable composite design. 

4. CONCLUSION  

This study successfully demonstrated a machine 
learning-driven optimization framework for improving 
the FDM printability and mechanical performance of 
biodegradable polymer nanocomposites based on 
PLA/PHA reinforced with CNC and SiO₂ nanofillers. 
The experimental results established that CNC 

provided superior mechanical reinforcement, achieving 
a maximum tensile strength of 54.1 MPa at 1.5 wt%, 
representing a 22.8% improvement over baseline 
PLA/PHA. SiO₂ offered moderate strength 
enhancement but exhibited superior extrudability at 
higher loadings. Rheological and thermal analyses 
confirmed that nanofillers influenced melt behavior and 
crystallization, which in turn governed print quality and 
interlayer bonding. While the present study 
demonstrates the strong potential of machine learning 
to accelerate the optimization of biodegradable 
polymer nanocomposites for FDM, it is important to 
acknowledge practical limitations associated with 
real-world implementation. The predictive performance 
of ML models is inherently dependent on the quality, 
diversity, and representativeness of the experimental 
dataset, and model generalizability may be affected by 
printer-to-printer variability, hardware-specific thermal 
control, and environmental conditions. Additionally, 
scaling such frameworks from laboratory-scale 
experimentation to industrial manufacturing requires 
the incorporation of larger, multi-source datasets and 
standardized calibration protocols. Consequently, 
machine learning should be regarded as a powerful 
decision-support tool that complements experimental 
insight rather than a universal replacement for process 
expertise. Future efforts integrating multi-printer data, 
in-situ sensing, and closed-loop control strategies will 
be essential to fully realize the practical impact of 
ML-driven optimization in sustainable additive 
manufacturing. 
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