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Abstract: In the chemical industry, the development of sustainable economic strategies for accessing products with high
added value from substitutes and cheaper sources is now more of a challenge. Silica is one of the most frequently used
chemicals and is often used in many industrial applications, such as in toothpaste as a cleaning agent, in the rubber
industry, and as a reinforcing material. This essay summarizes alternative approaches for the synthesis of salt and
hybrid geocide materials. So far, these phases have been synthesized from molecular silane precursors via
water-splitting sol-gel chemistry or chlorinated silane incineration processes, and thus indirectly from quartz sand.
However, quartz sand is a non-renewable resource, and the scarcity of actual sand is becoming increasingly problematic
for various processes in the chemical industry. In fact, quartz sand is the second most common raw material in the world,
and its availability has a major impact on many production processes. B. Healthcare or electronic devices. In the actual
context of sand shortage, the drafting of silica-based materials is increasingly attracting interest from alternative sources.
This summary article discusses the new possibilities for access to bio sourcing and material-based sources such as
renewable starting materials, electrical and electronic equipment in waste equipment, or fluorosilicic acid, a by-product of
the phosphate industry. Silica must be considered a valuable raw material, and it demonstrates that alternative
production processes from renewable resources, as well as cyclical lifetime assessments and valuable recycling
strategies for these materials should be considered in consideration of the creation of sustainable and periodic
production processes. The exciting science of organic devices has brought about a completely new stage of feasible bio
detecting innovation, which offers a prospective horizon for applications in therapeutic diagnostics and organic checking.
This audit report provides a thorough analysis of the remarkable advancements in organic electronic devices and their
potential for bio detection applications. The need for more accurate, more affordable, and more capable sensors was felt
as a result of global scientific advancements, the development of electronic equipment, and the enormous changes that
occurred over the last several decades. In order to be sensitive to minute amounts of gas, heat, or radiation, sensors
with high affectability are used nowadays. It is necessary to disclose underused materials and devices in order to
increase the affectability, capability, and accuracy of these sensors. Due to their small and nanoscale estimates, Nano
sensors—sensors that are nanometers in size—have exceptionally high precision and responsiveness, allowing them to
react without a doubt to the proximity of many gas particles. Compared to conventional sensors, Nano sensors are
inherently more delicate and smaller.

Keyword: Sustainable bio-sensor, Chemical sensor, Pharmacia sensor, Efficiency, Nano sensors, environmental,
Nano-Silica, Hybrid Composites.
1. INTRODUCTION texture science, and surface) and texture science
(mechanics, light, and thermodynamics) [17-22]. The
identifying element is a sincere endeavor to identify
and formally inform the target analyte (species of
inquisitive) about a complicated test [23-27]. At that
point, the pioneer converts the chemical signals sent to
the analyte by the official of the recognizing component

The use of chemical, nano, and biosensors is one of
the most fascinating topics in chemistry [1-5]. The
number of variables and the categorization of
techniques and methods used in this topic can be used
to resolve this issue [6-10]. More often than not, this is

especially because of the unmet demands that have
arisen in useful analysis, routine examination,
nutritional analysis, and timing of many things. Sensors,
for instance, may be used to identify dangerous
chemicals, illegal narcotics, and persons engaged in
conflict. Another practical use of biosensors that has
received some attention recently is the control of drug
action inside the body [11-16]. The structure of a
sensor displays examiners of several disciplines,
including normal chemistry, science, devices, and the
unique branches of chemistry (common, examination,
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into a measurable yield accost [28-33]. Biosensors rely
on commonplace elements like antibodies. Additionally,
sensors can be made of chemicals, receptors, or cells
[34-38]. It is possible to find a recognizing component
for analytes for which there are no common receptors
with a short time, later cues, and a focus on and correct
union of particles (and macromolecules) in normal
chemistry [39-44]. This shown particle is somewhat
linked to the topic of debilitating and may be used as a
sensor component in a chemical sensor (Chemo
sensor) [45-50].

2. (BIO)ORGANIC SENSING

A chemical device or species that can converse with
an analyte in reverse is called a sensor. A change in a
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quantifiable quantity, such a change in color or
fluorescence, is associated with this connection
[51-55].

2.1. Detection Methods in Chemo Sensors

In recent decades, the fabrication of nanoscale
materials has proven to be a promising avenue for use
in chemical sensing and biomedical and biological
analysis [56-59]. Nanomaterials have proven promising
in such chemical and biological analyses primarily due
to their highly customizable size- and shape-dependent
chemical and physical properties. Additionally, they
have unique surface chemistry, thermal stability, high
surface area, and large pore volume per unit mass,
which can be exploited for sensor fabrication [60-64].
This review discusses the chemical and physical
properties of nanomaterials required for use as
chemical and biosensors. We also highlight some
notable recent approaches using nanoscale materials
as scaffolds for chemical and biosensor monitoring
[65-70]. As described herein, nanomaterials that have
proven useful in sensor fabrication have compositions
that include metals, metal oxides, chalcogenides, and
polymers. Their structures range from nanoparticles,
nanorods, and nanowires to nanopores and nuclear
shells [71-74].

. Fluorescence Detection
. Colorimetric Detection
o Electrochemical Detection

Every one of these tactics has advantages and
disadvantages. Fluorescence is a widely used method
that may have very high affectability. Although it
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Figure 1: Components of an organic chemical sensor [1-2].

contains a lesser affectability, the colorimetric
approach is equivalent to fluorescence. Although the
electrochemical approach is used for some species, its
affectability is high and the hardware needed is simple
[75-80].

2.2. Fluorescence-Based Sustainable Bio-Sensor
Principles

The two essential parts of chemical sensors are the
collector of this salute and the fluorophore, which is the
allocate that generates the accost. The fluorophore
shows up a change in salutation within the form of a
color adjustment or fluorescence, and the receptor
binds to the analyte within its proximity [81-85]. Figure
1 shows the elements that make up a chemical sensor.
The excitation of an electron from the atom's highest
elevated orbital (HOMO) to its smallest had orbital
(LUMO) causes a photon or fluorescence spike in a
coordinate arrangement. As you can see in Figure 1(b),
a combination of non-bonded electrons is positioned
inside the fluorophore particle's area. This orbital is
crucial because it is between the fluorophore's HOMO
and LUMO orbitals [86-90]. In the absence of light, one
of the non-bonded electrons is traded to the HOMO
orbital fissure of the fluorophore, which is created after
the electron excitation, energizing the electron from the
HOMO orbital to the LUMO [91-95]. The excited
electron is transferred to a non-bonding orbital, which
stops the fluorescence instead of going back to the
ground state. Photoinduced Electron Transfer (PET), is
the name of such a device [96-100]. The essentiality of
this orbital will decrease and the exchange of the
electron to the homo orbital's crevice will be expected if
the same non-bonding electron combination becomes
interested in a holding interaction, as shown in Figure
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1(b). With the emission of radiation, the energetic
electron from the LUMO orbital returns to the ground
state; this phenomenon is known as
Chelation-Enhanced Fluorescence (CHEF) [101-106].

3. ANION SUSTAINABLE BIO-SENSOR

Numerous anions, including fluoride, cyanide,
phosphate, nitrate, pyrophosphate, and others, can be
detected using a variety of bioorganic sensors. Some
of these are listed below [40].

3.1. Fluoride lon Detection via Fluorescence using
an lon-Sustainable Biosensor

Functionalization of nano silica by a distinctive
particle Fluorescence change inside the vicinity of the
fluoride anion during watery action, as seen in Figure
2(b). The fluorescence does not change the proximity
of other anions such bromide, iodine, and sulfate, as
seen in Figure 2(a). In the interim, a change in
fluorescence occurs due to the proximity of the fluoride
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anion and the formation of hydrogen bonds with
nitrogen hydrogens [107-111]. Here, the fluorescence
is stopped because nitrogen exchanges non-bonded
electrons with the sensor's fluorophore allocate.

3.2. Sensor for Detection of Phosphate Anion
Through Colorimetry

This sensor uses fluorescein reinforcement to
identify phosphate anion. Its fluorescein allocation
takes on a certain hue. As seen in Figure 3, this sensor
is made up of crossover materials with nanoscale anion
authoritative acceptor targets. The opacity of
mesoporous nano-silica is caused by the absence of
the phosphate anion, the anionic subordinate of
fluorescein. This reinforcement is released into the
environment because to the proximity of the phosphate
anion, as seen in Figure 3 and is the cause of the color
change [112-117]. Consequently, the fluorescein

reinforcement's release into the environment is actually
what led to the development of the salute.

8 ag
4

Figure 2: An ion sensor that uses fluorescence to detect fluoride ions [3].
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Figure 3: Phosphate anion detection sensor [3].

4. CATION SENSORS

4.1. Sensor to ldentify Copper Cation Through
Colorimetry

The purpose of this sensor is to differentiate
between copper cations. By functionalizing silica
nanotubes with organic particles, this sensor is created
[118-123]. The color of functionalized silica nanotubes
is shown in Figure 4(a) when no cations are nearby, in
Figure 4(b) when copper cations are nearby, and in
Figure 4(c) when additional cations are nearby.
Additionally, the interaction between copper and the
acceptor position on the silica nanotube is shown in
Figure 4(d).
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4.2. SENSOR for the Detection of Mercury Cations
Through fluorescence

Research presents a cationic chemical sensor for
lead particles that is built on core-shell silica
nanoparticles on press oxide. In this study, an organic
chemical is used to functionalize the core-shell
nanostructure [124-127]. Figure 5 shows how this
sensor's fluorescent changes. When an organic atom is
close to a cation, it emits radiation.

5. CHEMO DOSIMETER IRREVERSIBLE CHEMICAL
SENSORS

These sensors are indicative of sensors that
undergo irreversible reactions with the analyte; the
alteration within the normal species' structure is what
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Figure 4: Colorimetric sensor for copper cation identification [3].
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Figure 5: Fluorescence-based sensor for lead cation detection [4].

causes the color shift or fluorescence modification in
these sensors. These sensors have undergone an
irreparable alteration. Examples of this type of sensor
are provided below to help with memorization
[128-131].

5.1. CHEMO Dosimeter
Nanoparticles for
Through Colorimetry

Based on Gold
Detection of Nitrate Anion

To identify unique structures including DNA,
proteins, tiny particles, metal cations, and cancer cells,

A

Figure 6: Chemo dosimeter for anion [4].

functionalized gold nanoparticles that exhibit specific
optical characteristics are used. Figure 6 shows the
nitrate anion zone's chemo dosimeter. Two
functionalized gold nanoparticles in this chemical
situation undergo a bimolecular reaction inside the
proximity of the nitrate anion, which results in the
coupling of these two particles and color adjustment
[132-137]. Figure 6(b) illustrates this color change
within the proximity of different nitrate anion
concentrations.
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Figure 7: Nano-silica-based chemo-dosimeter for copper cation detection [3].

5.2. Chemo Dosimeter Based on Nano Silica to
Identify Copper Cation Through Fluorescence and
Colorimetry

Copper cations are intended to be recognized by
this chemo dosimeter. The structure may function as a
chemo dosimeter with the dual characteristics of color
change and fluorescence when the copper cation is
nearby. It does not exhibit any change in fluorescence
when it is in close proximity to other distinguishing
cations, as you can observe [138-142]. A change in the
particle's structure, as seen in Figure 7, results in a
change in color and fluorescence when the copper
cation is close by.
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Figure 8: Glucose detecting sensor [4].
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6. MOLECULAR SENSORS
6.1. Sensor for Glucose Detection

A composite of nano-silica and organic molecule
was engineered, which functioned as an effective
sensor for X due to its specific interfacial properties
(Figure 8). However, boron acquires a negative charge
when saccharide is present and interacts with it. In this
instance, nitrogen experiences an increase in the
production of positive charge [143-146]. When a
hydrogen bond forms, nitrogen acquires a positive
charge that stops electrons from moving and causes a
shift in fluorescence.
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Figure 9: A trinitrotoluene detection sensor [5].

6.2. Nanoparticle-Based Molecular Sensor used for
the Detection of Trinitrotoluene

In Figure 9(a), a sensor for detecting TNT
(trinitrotoluene) was depicted. A small number of
conjugate-bonded polymer strands make up this
sensor [147-151]. This polymer string's units are shown
in Figure 9(b). Based on the change in the
fluorescence of the pyrene species deposited on the
nanoparticle in the vicinity of TNT, the functionalized
ruthenium metal nanoparticle has been used to
differentiate trinitrotoluene (Figure 9(c)).

6.3. Biological and Environmental Applications of
Sensors Based on Magnetic Nanoparticles

Engaging nanoparticles with organic-mineral
crossovers are particularly capable of identifying and
allocating particles in routine and standard testing.
Various clinics have thought about limiting the initial
figure of the disease from blood. Typically, layers are
used to specifically hold small particles that are
restricted to small particles, such serotonin, potassium,
and urea. These films cannot be used to limit normal
materials because they are too broad [152-157]. In a
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study, lead was separated from human blood using
nickel nanoparticles tagged with molecule 1. As seen in
Figure 10, the acceptor objectives' absorption of lead
causes a change in fluorescence. Because to this
nanoparticle's interest, all of the lead is retained inside
the blood after 30 minutes and can be separated using
a magnet. It is possible that uranium is a naturally
occurring radioactive metal [158-162]. This species is
growing and is occasionally observed in public
waterways, which is dangerous for human survival.
Thus, the coordination of sensors capable of identifying
and separating this species has been highly esteemed.
By using charming press nanoparticles enhanced with
bisphosphonates, they were able to adequately identify

and retain these particles in their investigation
[163-168]. Figure 11 shows how to distribute
effectively.

6. COMPOSITE" AND "BIODEGRADABLE"

6.1. Composite Structure

Due to the synergetic or complementary results
among organic and inorganic components, which could
bring about stepped forward houses or performances,
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Figure 10: Magnetic Nano silica synthesis for blood-lead separation [6].
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Figure 11: Uranium detection sensor [6].

the organic/inorganic hybrid substances have currently
won a sizeable hobby in lots of fields [169-172]. Up to
date, many reviews have been posted primarily based
on the organic/inorganic hybrid substances for the
sensor applications. The paper furnished a complete
assessment of the latest development of the
organic/inorganic hybrid sensors. The
organic/inorganic hybrid sensing substances will be
fabricated in numerous configuration kinds which
include intercalating kind, core—shell kind, coating kind
and blended kind [173-176]. The sensing shape of the
hybrid sensors will be supplied in thin-movie,
thick-movie or pellet shape, and the sensing
performances may want to be measured within the
flowing or static-kingdom system. The hybrid sensing
substances have been implemented in fuel Oline
sensors, humidity sensors, ultraviolet sensors, stress
sensors,  electrochemical immunosensors  and
fluorescent chemo sensors [177-182].

Growing concerns about environmental protection
have led to the continued expansion of sensor
development. A sensor is a converter that converts
energy foam into another suitable shape suitable for
further processing. While many types of sensors are
well established in industrial, agriculture, medicine and
many other fields, the development of sensor materials
with high sensor skills is still underway at an
unprecedented pace. Inorganic and organic
compounds have been proposed as sensory materials
and are becoming increasingly popular due to several
special benefits [183-186]. In general, inorganic
compounds generally have high chemical and thermal
stability, allowing for applications under a variety of
operating conditions. It can be obtained through
cost-effective procedures and can be easily separated
into thin or thick film formats with a variety of
techniques. Organic compounds are characterized by
their synthetic versatility and reactivity. This allows
modulation of the molecular structure of the detection
material to improve selectivity for target analytes.
Furthermore, in the field of sensors, organic detection
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materials such as conductive polymers (polyaniline
(PANI), polypyrrole (PPY), and polyhyophen (PTP) can
show the disadvantages of individual inorganic or
individual organic detection materials, namely high
operating temperatures and low operating
temperatures for inhibitory systems of muscular,
muscular, emergency materials. This study shows that
mechanical strength and chemical stability can be
improved by adding inorganic particles to organic
materials for the formation of hybrids [188-190].
According to this idea, the most common approach was
that inorganic connections are exploitation as
protective matrix, and organic units, which are
detection components, are distributed by various
techniques. On the other hand, another more attractive
approach is that hybrid materials work together both
components of the detection mechanism, leading to
improved services. Thus, in recent decades,
organic/inorganic hybrid materials with different
combinations of two components expected to receive
new art composites with synergistic or complementary
behaviors have attracted the attention of many
electronic, optical, magnetic, or catalytic applications.
country. Regarding sensor applications, many reports
have been published based on organic/inorganic hybrid
recording materials for alleyways, moisture sensors,
UV sensors, stretch sensors and other sensor
applications. However, there is still no special review of
the recent development of inorganic/organic hybrid
materials for sensors. Research over the past decade

prepared various/inorganic hybrids including
PTP/SNO2, PPY/SNO2, PPY/WO3, PTP/WO3,
PPY/ZNO, PANI/ZNO/ZNO and PPY/d ex-fe20

[191-193]. Gases such as NHj, H,S, NO,, methanol,
ethanol, and acetone. Gas barriers showed that the
hybrids exceeded each alleyway in the alley compared
to individual components in space or cold temperatures
[194-196]. Experimental data also showed that the
hybrids had higher thermal stability than pure polymers.
This was advantageous for potential applications as
chemical sensors. Based on research and detailed
reference tests, we present a comprehensive study on
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the development of sensors based on the latest
inorganic/organic hybrid recording materials.
Researchers looking for new material for advanced
features are expected to receive valuable information
from the overview [197-203].

MS Saveleva et al. [69] Hybrid substances, or
hybrids incorporating each organic and inorganic
constituents, are rising as a completely amazing and
promising elegance of substances because of the
diverse, however complementary nature of the houses
inherent in those one-of-a-kind training of substances.
The complementarity results in a great synergy of
houses of favored fabric and ultimately an end-product.
The variety of resultant houses and substances used
within the production of hybrids results in a completely
vast variety of software regions generated through
attractive very one-of-a-kind studies communities. We
offer right here a fashionable type of hybrid substances,
in which organics—in-inorganics (inorganic substances
changed through organic moieties) are prominent from
inorganics—in—organics  (organic  substances or
matrices changed through inorganic constituents). In
the previous area, the floor functionalization of colloids
is prominent as a stand-by myself sub-area. The latter
area—functionalization of organic substances through
inorganic additives—is the point of interest of the
modern evaluation. Inorganic constituents, frequently
within the shape of small debris or structures, are the

layer-through-layer assembly, polymer brushes, block
co-polymers and different assemblies. Biological
organic matrices embody bio-molecules (lipids,
polysaccharides, proteins and enzymes, and nucleic
acids) in addition to better stage organisms: cells,
bacteria, and microorganisms. In addition to imparting
info of the above type and evaluation of the
composition of hybrids, we additionally spotlight a few
hostile yin-&-yang houses of organic and inorganic
substances, evaluation packages and offer an outlook
to rising trends.

6.2. Hybrid and Composite Materials

Examples include improvements or modifications to
mechanical and  elasticity, optical, catalytic,
electrochemical properties, sensors, waterproofing,
corrosion prevention, insulation, and more for cell
adhesion [204-208]. Figure 12 shows the selected uses
of inorganic-organic hybrid materials and shows some
images of the corresponding materials. The various
applications shown in Figure 12 are the result of the
combination of complementary properties of the
corresponding materials. Further applications of these
materials are discussed [131-137].

The introduction of inorganic particles into the
hydrogel coating allows the formation of a catalytic
active interface, while the addition of nanoparticles

product of minerals, clays, semiconductors, metals, allows th.e hydrogell to be corltrolleq [131'133.]'
carbons, and ceramics. They are proven to be Incorporating magnetic nanoparticles into organic
integrated into organic matrices, which may be coatings is used to induce release functions and
prominent as training: chemical and biological. manipulate tissue for tissue engineering. Magnetic
Chemical organic matrices encompass coatings, ~ nanoparticles are also used to impart magnetic
motors and drugs assembled into: hydrogels, response properties to magnetic hydrogels. The hybrid
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Figure 12: Various changes to the organic matrix due to inorganic components are classified according to their application
[131-137].
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interfaces created by surface radical polymerization
have also been shown to respond to stimuli. Various
functions and possibilities for incorporating inorganic
components into organic/inorganic coatings have been
demonstrated (Figure 12). Hybrid and functional hybrid
materials with precisely designed inorganic/organic
interfaces or special properties can overcome a variety
of biomedical challenges, including bone tissue
regeneration. Figure 3. Microparticles made of calcium
carbonate (father) containing the RGD peptide
sequence have a positive effect on biogenicity and
serve as templates for the stimulation of mineralization
and differentiation of Meekma'll electricity (MSC) in
vitro. Calcium carbonate is used in a variety of regions
[134-137]. The crystallization process of calcium
carbonate is complex and involves the formation of
various crystalline phases such as calcite, aragonite,
and father. Father is an unstable polymorphism that
rarely occurs in nature [209-212]. Porous parent
calcium carbonate particles are spherical, mesoporous
polycrystalline, and possess a number of
advantageous properties, including biocompatibility
and high biochrome capacity, which is useful for drug
delivery applications. Fathe rite microparticles were
also used as stabilizers in suspension polymerization
and regenerative medicine approaches in industrial
settings. One of the most promising applications for this
particle is active coating or efficient drug collection as it
penetrates micrometer-sized structures such as cells
and tissues. The synthesis of CACO3 particles with
different properties such as size, surface, porosity, and
hydrophobicity makes them good candidates for
surface coatings, while loading them with bioactive
polymers makes them attractive carriers for the
protection and release of medicinal products [138-139].
The morphology and crystalline form of calcium
carbonate changed in association with
protein-mediated nucleation during biomineralization.
CaCO3-lentinane microspheres with hierarchical
composite pore structure were prepared by
self-assembling of nanoparticles. These structures can
significantly reduce the release rate and extend the
release time of anticancer drugs, potentially reducing
their potential side effects. Nanoparticles were used to
synthesize hybrid crystals of CaCO3 and bovine serum
(CaCO3/BSA) in the form of flying plates. Crystal
nucleation and aggregation have been shown to
influence the secondary structure of proteins and
provide a promising route for the encapsulation and
delivery of various substances in pharmaceutical
applications. It should be noted that biomineralization
using calcium phosphate is also an important process.
Furthermore, the father CACO3 crystals serve as
sacrificial templates for the development of bio

functional structures for drug harvesting, such as
mesoporous carriers from PEG and proteins. In
addition to mechanical properties, surface
functionalization of the coatings was identified as an
important  feature. It was confirmed that
functionalization of the coating stimulates stimulation
and promotes cell proliferation by enzymes and
proteins. Recently, it has been shown that adding ALP
(alkaline phosphate) to the surface of hybrid scaffolds
promotes cell adhesion and lifespan ability through
functionalization of hydrogels and calcium carbonate
particles [213-216]. The antibacterial properties of
coatings are always an important property of coatings.
Improving environmentally friendly materials such as
pectin is an important advance. It should be noted that
organic-inorganic hybrid coatings continue to attract
much attention, especially in tissue engineering, where
mechanical properties are important. Traditionally,
modulation of mechanical properties plays an important
role in controlling cell adhesion. The addition of
nanoparticles to the polymer matrix is associated with
the formation of further chemical crosslinks with the
polymer, which improves mechanical properties and
therefore must be tailored to cell and tissue adhesion.
Figure 13, Functionalization of polymer films and
coatings with remotely activated microcapsules opens
up further possibilities for drug delivery from coatings.
Metal nanoparticles have also been shown to act as
local heating centers and guide cells to the
polymer/nanoparticle surface [140]. Lasers can also be
used for selective control of polymer surfaces by
releasing adsorbed molecules on the surface. Another
desirable feature is morphological surface modification.
Graduate coatings and recently proposed spongy
structures are considered important functional
components. Conditioning mechanical properties are
recognized as a very important feature and are
enhanced by the addition of inorganic particles to the
polymer matrix. This is tailored to the materials
required to absorb different cells with very different
mechanical properties (Figure 13). Figure13 shows that
organic coatings can be used to adapt the mechanical
properties of cells by setting the inorganic fraction
(weight fraction). The combination of organic molecules
and inorganic nanoparticles has been shown to
improve mechanical properties. Similar effects were
observed with the addition of carbon nanotubes and
carbon nanotube failures containing calcium carbonate
particles [217-219]. Furthermore, we used a completely
different filler, nanocellulose, to improve the
mechanical properties of the soft coating. An
investigation of the influence of inorganic feeding on
the mechanical properties of soft coatings was also
carried out [141].
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Figure 13: Relationship between the mechanical properties (Young's modulus) of cells, tissues, and organs and the mechanical
properties (Young's modulus) of various components of organic hybrid materials [140-141].

6.3. Biodegradability/Sustainability

Reinforced composite materials based on synthetic
fibers are used in a variety of industries, including the
automotive, aerospace, construction, and medical
sectors. This is mainly due to its unique properties and
multifunctionality. However, these composite materials
are not biodegradable and are harmful to the
environment. To overcome this problem, biopolymers
were used instead of synthetic fibers to strengthen the
composites. The use of biopolymers makes the
composite partially biodegradable. However, problems
arise when biopolymers are used in composite
materials. The biopolymers used are hydrophilic,
whereas the matrix materials are mostly hydrophobic.
This weakens the interface responsibility between
these two components and reduces the properties of
the composite material. To solve this problem,
nanophytomaterials are used in composite materials.
These nanofilm materials improve the interfacial
responsibility between these components and clearly
improve the properties of the composite materials. The
use of Nano plot materials has been shown to improve
the mechanical properties, thermal properties,
electrical properties, water absorption, etc. of
composite materials. The use of nano filters in
Com-Positive helps to promote the use of biopolymers
to reinforce composites instead of synthetic fibers. This
uses non-toxic materials inside the car body, reducing
the emission of toxic gases from synthetic parts of the
car interior when the car body is heated. This usually
occurs when the vehicle is left in the sunlight for a long
time. Additionally, the fibers are lighter than synthetic
fibers, which increases the strength and weight of the
car's components, which improves fuel economy and
reduces the pollution caused by the car. Over the past
decade, much research has been conducted in various
fields related to polymeric nanocomposites, as well as
improving the properties of bio composites by adding
Nano surfaces and finding locations where Nano

surfaces can be used. Currently, nanocomposites are
often used in various areas due to their better
properties compared to composite materials. We use
nanofillers that help significantly improve the properties
of composite materials. Currently, the materials used in
industry are not biodegradable, so if they can remain in
the environment for a long time, they lead to the
production of toxins, harming the environment and the
organisms themselves. However, these materials are
useful for better properties of the environment and the
life and health of countless people and animals. During
the selection of materials for the production of
nanocomposites, there are three main characteristics
of materials to be examined: biological degradation,
sustainability, and nanotoxicity [143-145].

6.3.1. Biodegradability

As the name explains, biological deterioration is the
ability of a companion to deteriorate if it remains in
nature for some time without the aid of external
treatment. This is done with the help of microorganisms
in the ground, which break down the material into
smaller compounds such as carbon dioxide, water, and
basic elements. When a material deteriorates, it must
break down into its constituent materials and return to
the soil or nature. These biodegradable materials do
not scorch the environment during deterioration.
Biologically degradable components can be found to
produce nanocomposites from natural sources such as
plants, animals, and microorganisms. Some examples
of biodegradable ingredients that can be used in
nanocomposites include chitin, cellulose, flax fiber, jute
fiber, and coconut fiber [146-148]. These materials are
suitable for use in nanocomposites and also have
excellent properties. However, nanocomposites do not
effectively provide the properties required as synthetic
materials and require special treatment to adapt the
properties to the synthetic components. Therefore, they
are not used frequently. However, due to the growing
awareness among people of environmental pollution,



Nano-Silica and Biopolymer Hybrid Composites for Sustainable (Bio)Organic

Journal of Composites and Biodegradable Polymers, 2025, Vol. 13 33

these materials are attracting increasing attention, and
in recent years, much research has been studied in the
production of various organic nanocomposites. It has
been found that only a small number of biopolymers,
such as cellulose, gelatin, polyacid,
polyhydroxybutyrate, polycaprolactone, and
polybutylene succinate, have excellent properties such
as thermal stability, antibacterial properties and
antioxidant properties suitable for food packaging

applications. Similarly, some polymeric
nanocomposites consisting of polylactide,
polycaprolactone, polyvinyl alcohol,

polyvinylpyrrolidone and cellulose were examined in
detail to replace the non-biodegradable
nanocomposites used in electronics. These
nanocomposites can be used as substrates, dielectric
layers, and active layers in electronic components.
However, the biggest concern is the lifespan of
biodegradable components. These components tend to
deteriorate under appropriate conditions. A rough
classification of polymers is shown in Figure 14. In
most cases, the addition of nano flyers to polymer
composites did not directly affect the biodegradability
of the composites. Adding Nano plot fabrics to
composites improves the properties of polymer
composites in manufacturing where natural materials
are used, and is suitable for use in a variety of
industries, thus contributing to the replacement of
already used synthetic materials. Nano plots with
antibacterial properties may have some effect on the
biological degradation of composites, which in the long
run does not affect the degradation of composites and
is easier to reduce than synthetic materials. Bio

composites usually do not have properties because
synthetic materials offer better properties and are
suitable for the job. However, the addition of
nanoforging materials improves the properties of the
bio composite, making it a more suitable alternative to
synthetic materials. This allows for the use of more
biodegradable materials and exempts the environment
[149-151].

Glaskova-Kuzmina etal[152] investigate the
durability of bio-nanocomposites. The authors found
that using biodegradable polymers as the basis for
nanocomposites reduces the mechanical properties of
the nanocomposites. However, this lack of real estate
can be overcome by using appropriate nano areas. In
this study, we investigated the influence of various
facts such as atmospheric humidity and temperature
on the degradation of nanocomposites. It was found
that the addition of certain nanonets with antibacterial
properties improved the barrier properties of the
composites and reduced the degradation of the
nanocomposites.

Silva et al. [153] outlined the development of
various biodegradable polymers that can be used for
ribbon/tendon tissue reproduction. The authors
reported polymers such as collagen, alginate, silk, and
polysaccharides in the field of tissue reproduction.
Collagen and polyacids have been found to be
materials used in the manufacture of biodegradable
scaffolds.

Guo et al. [154] developed a thermally conductive
and conductive biodegradable polymer using graphene

Biocompatible and biodegradable

Natural polymers

polymers

Synthetic polymers

From From
microorganisms biotechnology
Polyhydroxyalkanoates Polylactides

Figure14: Biodegradable polymers [151].
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nanosheets and poly (butylene adipate-co-butylene
terephthalate) (PBAT) and blended it with polylactic
acid (PLA). PBAT was used because it could
accommodate high filling of graphene nanosheets, but
PLA was used because it had a low affinity for
graphene and limited dispersion of graphene within
PBAT. This combination allowed for 40wt% graphene
filling, resulting in high thermal conductivity (338 S/m)
and electrical conductivity (3.15 W/m K) of the formed
nanocomposites. This property allows the use of
nanocomposites in the electronics industry, and also
allows the nanocomposites to become completely
biodegradable depending on the material used.

6.3.2. Sustainability

Sustainability is a goal that takes into account three
main pillars: the environment, the economy and society.
Summary of the various definitions available for
sustainability: sustainability means using resources
available to the current generation in a way that is
successfully met without compromising the ability to
meet the needs of future generations. The focus of
nanocomposites is on supporting environmental
sustainability. To ensure that nanocomposites are
sustainable, the materials needed to manufacture
nanocomposites are available from renewable
resources  such as plants, animals, and
microorganisms. These sources also produce
biodegradable components, which make these
materials extremely beneficial to the environment and
to the people. It also lends itself to sustainable
nanocomposites if the material is based on waste from
another process or is recyclable. It also shows that
biological degradation and sustainability go hand in
hand. In addition to the sustainability of ecological
sustainability, it also helps to achieve social
sustainability as we know it today. The masses try to
find natural products everywhere, be it in everyday
objects or other tools used. The use of organic
nanocomposites in the industry will be advantageous
for companies as they are purchased by
environmentally conscious customers based on their
superior choice over other synthetic materials, which
will help improve the company's image in the long run.
Another aspect of sustainability, which is economic
sustainability, is also achieved by using bio composites,
as most of the materials used to produce composites
are natural. They are cheaper and more easily
available compared to the synthetic materials used.
The production of these materials does not cause
pollution and is therefore healthy for the environment.
The waste generated after the production of
bio-nanocomposites is also mostly biodegradable,
which helps reduce waste treatment processes and
can be sold for use as fertilizer in farms and other
industries, providing economic benefits to companies in

the long run. Therefore, bio-nanocomposites can
achieve all three sustainability aspects: environmental
sustainability, social sustainability, and economic
sustainability [156-158].

Kafy et al. [158] investigated the use of porous
cellulose/graphene oxide nanocomposites as electrode
materials that can be used in supercapacitors. With
cellulose, nanocomposites are renewable and
sustainable, as cellulose is collected from renewable
sources that do not harm the environment. The authors
found that adding graphic oxides to Cellulose Trix
results in improved power density, zinc cargo,
discharge time and specific capacity. This improvement
makes nanocomposites available with supercapacitors.

Majeed et al. [159] We conducted a review of
potential materials from nanocomposites filled with
nanotubes/natural fibers. This can be used for food
packaging activities. The authors found that there is a
number of research work focusing on the use of
nanocomposites based on natural materials in the food
packaging industry. This is an advantage because
composites are completely biodegradable, inexpensive
and sustainable due to the use of such materials.
However, the problem can lead to poor properties of
these natural ingredients compared to synthetic
materials and shortening their storage capacity, leading
to the penetration of foods stored therein. For these
reasons, these natural materials-based
nanocomposites are not widely used in the food
packaging industry.

Chaturvedi et al. [160] investigated the role of
carbon nanotubes on the flexural strength and
dielectric  properties of fly ash/epoxy-based
nanocomposites. The fly ash used in nanocomposites
is a waste product produced from the combustion of
coal. When coal is burned, it is released along with
exhaust gases. Using this fly ash is similar to using or
recycling waste that would otherwise be disposed of.
This fact makes nanocomposites sustainable. Adding
carbon nanotubes to the composite material slightly
increased the water absorption capacity. It also
improves the bending strength and dielectric constant
of nanocomposites, making them suitable for use as
economical and environmentally friendly construction
and construction materials.

Mogadam et al. [161] We developed paper coated
with nanocomposites based on
carboxymethylcell-serose bases containing Nano
kaolin and nanomachines and synthesized with waste
paper for packaging applications. Coated paper is
suitable for use as wrapping paper because it exhibits
excellent tensile strength and good mechanical
properties such as air overall.
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7. EMERGING APPLICATIONS OF POLYMER
NANOCOMPOSITES

Polymer composites are widely used in a variety of
industries. However, its scope was still inadequate in
some areas. This problem was overcome by adding
nanofillers to the polymer composite, and polymer
nanocomposites were formed. Polymer
nanocomposites are widely used in a variety of
industries, including automotive, aerospace, injection
molding products, coatings, adhesives, flame
retardants, packaging materials, microelectronic
packaging, optical integrated circuits, drug delivery,
sensors, membranes, medical devices, consumer
products, and more. Polymer nanocomposites can
replace other materials due to their excellent properties
such as lightweight, biodegradability, low density,
excellent barrier properties, excellent thermal and
electrical properties, and high strength to weight ratio.
Furthermore, the properties of polymer
nanocomposites vary according to the properties or
properties required for the task by modifying the Nano
full material or matrix components used to generate
polymer nanocomposites. A wide range of applications
is shown in Figure 15. This means that polymer
nanocomposites can be produced suitable for the task,
but this is not possible with other materials. As such,
polymer nanocomposites have a wide range of
applications. Many studies on the use of polymer
nanocomposites have been manipulated in different
regions [162].

Punia et al. [163] did an evaluation of the current
development in software of nanocomposites in
wastewater remedy. The authors observed that diverse
varieties of nanocomposites like carbon-primarily
based totally nanocomposite, metal-primarily based
totally nanocomposite, ceramic primarily based totally
nanocomposite, and magnetic-primarily based totally
nanocomposite were used for wastewater remedy. It
became additionally observed that recently,
ferrite-primarily based totally nanocomposites were
studied for wastewater remedy due to the fact it may be
without problems separated, regenerated, and reused
numerous instances without loss in its functioning.

Nasir et al. [164] studied approximately the current
improvements in polymer nanocomposite movies for
use in wastewater treatment. The authors determined
that those movies have appropriate traits like low cost,
power efficient, eco-friendly, operational flexibility, and
feasibility, which lead them to appropriate for utilization
in wastewater treatment. In addition to this, to in
addition boom their floor adsorption, mechanical and
antibacterial residences crosslinking marketers are
dispersed calmly within the polymer nanocomposite
matrix. Some of the used polymer nanocomposite
movies have been polyvinyl alcohol/zinc, polyvinyl
alcohol/copper, chitosan/ silver,
chitosan/polyaniline/NiOx, and polyether sulfone/
cobalt.

Kalia et al. [165] studied approximately the usage of
magnetic polymer nanocomposite for biomedical

Wastewater
Treatment

FOOd. Biomedical
Packaging Applications
Applications PP
Applications of
Polymer

Nanocomposites
Electronic Automobile
Applications Applications

Aerospace
Applications

Figure15: applications of polymer nanocomposites [162].
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application. These magnetic nanocomposites are
organized by the use of strategies like in situ, ex situ,
microwave reflux, co-precipitation, soften blending,
ceramic—glass processing, and plasma polymerization
techniques. These nanocomposites are used for in vivo
imaging, as superparamagnetic or bad assessment
agents, drug carriers, heavy metallic adsorbents, and
magnetically recoverable photocatalysts for
degradation of natural pollutants.

Wen et al. [166] studied using antibacterial
nanocomposite fashioned of polyvinyl alcohol changed
with zinc oxide—doped multiwalled carbon nanotube.
The addition of zinc oxide—doped multiwalled carbon
nanotube into the matrix brought about a boom within
the thermal stability, water vapor transmission rate,
hydrophobicity, and antibacterial assets of the
composite. A similarly take a look at indicates that the
nanocomposite can save you the lack of water from
greens for four days; it's also able to maintain chook
secure from microorganisms even as saved in a fridge
for 36 h, making it appropriate for meals packaging.

Malik [167] studied approximately the homes of
thermally exfoliated graphene oxide bolstered
polycaprolactone-primarily based totally bactericidal
nanocomposite. The addition of the nandfiller into the
matrix ends in the development of the mechanical,
antibacterial, and water soaking up capacities of the
nanocomposite, making it match for utilization in meals
packaging applications.

8. CONCLUSIONS AND CURRENT SITUATION AND
FUTURE OUTLOOK

. In order to identify dangerous compounds and
cations, anions, and fair particles using
colorimetric and fluorescence frameworks, we
investigated chemical sensors based on
common particles in this study. Because of its
strength, nano silica may be functionalized with

regular atoms to create half-breed nanomaterials.

Inorganic materials based on nano-silica and
crossover characteristics provide high selectivity
for identifying dangerous metal particles,
common chemicals, and anions. Additionally,
examples of the use of interesting nanoparticles
functionalized with distinctive species as
chemical sensors with common and distinctive
uses are provided within the discussion.

i In general, attractive opportunities await
research in the field of hybrid materials, as the
wide range of different properties of highly
complementary types of materials is advancing.
Critical masses of researchers interested in this
topic. Different approaches to different research
communities. A wide range of interdisciplinary

approaches used by researchers working in this
field. High demand from other research
communities is, for example, biological sciences,
which use not only hybrid materials but also
approaches that work with them. In particular,
further research is being conducted in various
fields of inorganic within the organization to use
the synergy of materials and research
communities. In the area of hydrogels, the
development of biogenic enrichment in which
inorganic particles provide a network is
advantageous for the use of remote modification
(network) or laser activation possibilities.
Hydrogels appear to be of great importance in
many fields, particularly tissue engineering. In
particular, controlling and adapting mechanical
properties is a challenge. Modification of
hydrogels with enzymes, proteins, active
biomolecules and nanoparticles provides a rich
environment to further improve the development
of the intrinsic and desirable properties of
organic matrices. The antibacterial and
anticorrosive functions often achieved by adding
positive connections to nanoparticles are
another important feature of materials
associated with the biomedical and nanomedical
sectors. In LBL, the complementarity of organic
and inorganic materials affects advanced drug
taxes and capsule construction, including
ambiguous release in vivo, control of
microcontroller reactions, LBL production and
more reliably further investigation of possibilities.
The placement of nanoparticles is considered an
important mechanism that controls mechanical
properties and allows for the spontaneous and
distant release of indifferent biomolecules. LBL
coatings on flat substrates also benefit from
mechanical properties, sensor functions and
long-range effects of various stimuli. This was
obtained by placing inorganic nanoparticles and
nanostructures. Additionally, the development of
gradient coatings provides additional
functionality. In  polymer  brushes, the
introduction of inorganic nanoparticles further
affects the control of the properties of microarray
and macro ray probes, which sensor functions
can particularly notice. In the nasal area of
block-Co polymers and polymers, sponsorship
and sensor functions are features that should be
further developed in hybrids. In polymerase and
other delivery vehicles, this drive allows for the
development of advanced applications by adding
inorganic nanoparticles. In the region of lipid
bilayers, the introduction of inorganic
nanoparticles can help us to better understand
the fundamental mechanisms of lipid membrane
function. This is expected to not only be useful
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for basic science but also affect the drug tax.
Liposomes are effective taxes, particularly in the
development of "stealth" preposes called in SO,
and modifications with inorganic nanoparticles
will further expand the area of release function.
Other biologically relevant molecules such as
DNA can ultimately be used for self-organization
of -idy nanoparticles, which can be used to
construct advanced sensors. Label-unfastened
sensing is likewise applicable for
microorganisms and inorganic nanoparticles can
offer important enhancement. In mobiliary
biology, both of the constructs defined above
may be used, or inorganic nanoparticles can
launch from cells, imparting in addition powerful
methods of turning in drugs. In addition,
analytical strategies will permit the tailoring and
manipulation of the mobiliary adhesion, wherein
the houses of inorganic nanoparticles and
nanostructures are tough to replace. A big wide
variety of upcoming developments, well-placed
and interdisciplinary in nature, will each make a
contribution and advantage from a really perfect
synergy among organic and inorganic materials.
In short, the outlook is vibrant for hybrids.

We discussed the impact on different types of
nanofillers, properties, preparation methods,
applications, and more. All of these sections
offered different benefits of using Nano flyers in
polymer networks and showed the various
locations where polymer nanocomposites could
be wused. This section discusses various
limitations regarding the use of nanofillers. The
most common factor that acts as a limitation is
the inappropriate distribution of Nano flyers
within the matrix. The distribution of nanofillers
along the matrix is difficult to control, and if the
distribution is not uniform, the properties of the
nanocomposite can be worse than improved.
Another limitation in the use of nanofillers is
nanotoxicity. Because of their small size,
nanofillers can cause a variety of complications
when they enter a living body, causing organ
damage and ultimately death. This is because its
size is so small that it can cause different
behavior from the same element when present in
large quantities or more. Another limitation of
using nandfillers is that their size is small, which
requires special methods for their manufacture
and incorporation into the matrix. Also, not all
matrices and nanofillers are compatible with
each other, so a specific nanofiller must be used.
Aggregation of nanofillers within the matrix is
also one of the limitations in the use of
nanofillers.  Although  agglomeration can
sometimes be beneficial to nanocomposites, it is

mostly  detrimental to nanocomposites.
Therefore, using nanofilers to  form
nanocomposites has both advantages and
disadvantages.

Polymer nanocomposites were examined in
detail and analyzed in various aspects. Various
possibilities for synthesis of various polymer
nanocomposites, their properties, degradation,
sustainability, nanotoxicity, and applications are
covered. Polymer nanocomposites are
increasingly used in a variety of industries, and
we have found that certain traditional materials
such as aluminum and plastics are being
replaced. Different properties that can be
controlled by adjusting the Nano and Matrix
components allow fine adjustments for the job by
varying the concentration of the Nano flyer in the
polymer nanocomposite or by changing the
materials used. However, there are some issues
associated with the use of polymer
nanocomposites such as nanotoxicity, unique
synthetic techniques, and nanoyl liquids such as
expensive carbon nanotubes. Natural materials
such as cellulose and chitin are cheap,
marginally available and biodegradable, making
them  environmentally friendly.  Chitosan,
nanotubes, and other such components were
investigated for use as fillers in polymer
composites for use as cost-effective and
environmentally friendly sewage treatment
solutions. Natural materials such as cellulose
and chitosan have certain antimicrobial
properties that lead to their use as nano foils in
biomedical applications. Silver nanoparticles, in
addition to other natural materials, also have
excellent antimicrobial properties that are useful
for biomedical applications. Various unique
natural materials such as pectin, chitosan,
alginate, agar, carrageenan, whey, and gelatin
were used for food packaging applications.
Similarly, conductive nanomaterials such as
graphene and graphite are used to create
polymer nanocomposites for the electrical
industry. Various automotive companies also
use certain nanocomposites made of boron fiber,
glass fiber and carbon fiber instead of plastic
parts in their automotive parts. In the future,
more research should focus on finding ways to
strengthen natural materials to the extent that
they can be used in polymer nanocomposites
instead of synthetic materials.
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