Species Senescence and Fractal Properties of Ageing

Authors

  • Igor Popov Saint-Petersburg State University, Faculty of biology, Department for applied ecology, 199178 Saint- Petersburg, 16 Linia VO, 29, Russia

DOI:

https://doi.org/10.12974/2309-6128.2014.02.02.3

Keywords:

Species, senescence, fractal, extinction, palaeontology, mechanisms of ageing.

Abstract

The senescence of species and species groups is a real phenomenon similar to the senescence of an individual. The most remarkable evidence of it is an extinction of numerous species groups, which cannot be explained by negative impact of environmental changes. The mechanism of species senescence can be characterized as follows: the organisms tend to produce the copies of themselves, but they cannot reproduce their exact copes for indefinitely long time, that is why the species inevitably change in process of change of generations of its representatives, even if the species is already well adapted to environment; such a continuous species transformation takes place in definite directions because of various constraints even if such directions are not rational and lead to extinction. The species senescence indicates on the fractal properties of ageing: it is scaleless, and existing at all biological objects, one of which is a part of the other. 

References

Mandelbrot B. Les objets fractals, forme, hasard et dimension. Paris: Flammarion 1975.

Dewey TG. Fractals in molecular biophysics. Oxford New York: Oxford University press 1997.

Ruiz-Torres A, Beier W. On aging and life span of human species based on its evolution from Australopithecus up to modern human. Open longevity science 2008; 2: 107-113. http://dx.doi.org/10.2174/1876326X00802010107

Brocchi G. Conchiologia fossile subapennina, con observazioni geologiche sugli Appennini e sul suolo adiacente: In 2 vol. Milano: Giovanni silvestri 1843.

1809, cit. from Lamarck JB. Philosophie zoologique ou exposition des considerations relatives a l’histoire naturelle des animaux. Paris: Martius 1873.

Haake W. Gestaltung und Vererbung. Eine Entwickelungsmechanik der Organismen. Leipzig: T. O. Weigel Nachfolger 1893.

Eimer Th. Orthogenesis der Schmetterlinge. Ein Beweis bestimmt gerichteter Entwickelung und Ohnmacht der naturlichen Zuchtwahl bei der Artbildung. Zugleich eine Erwiderung an August Weisman. Leipzig: W. Engelmann 1897.

Gould SJ. The Structure of evolutionary theory. Cambridge: Harvard Univ Press 2002.

Popov I. Orthogenesis versus Darwinism. A historical issue. Saint-Petersburg: Sant-Petersburg University press 2005. (In Russian with summary in English).

Popov I. Directed evolution of mankind and biosphere. In: Cigna AA, Durante M (eds) Impact of Radiation Risk in Normal and Emergency Situations. Springer Verlag 2006. pp. 211-218. http://dx.doi.org/10.1007/1-4020-4956-0_21

Smith B. Senility among Gastropods. Proceedings of the Academy of Natural Sciences of Philadelphia 1905; LVII: 345-361.

Beecher C K. The origin and significance of spines: a study in evolution. American Journal of science 1898; VI: 1-20. http://dx.doi.org/10.2475/ajs.s4-6.31.1

Beurlen K. Vom Austerben der Tiere. I. Die Einwirkungen der Umwelt. Natur und Museum 1933; 63, 1: 1-8

Beurlen K. Vom Austerben der Tiere. II. Das Gepräge der aussterbenden Tiergruppen. Natur und Museum 1933; 63, 2: 55-63.

Beurlen K. Vom Austerben der Tiere. 3. Der Artentod und der Individualtod. Natur und Museum 1933; 63, 3: 102-106.

Taylor PD. W. D. Lang, orthogenesis and the evolution of Cretaceous cribrimorph bryozoans. In: Jackson PNW, Spencer Jones MES (eds) Annals of Bryozoology. Dublin: International Bryozoology Association 2002. pp. 275-299.

Zittel K. Grundzüge der Palaeontologie (Palaeozoologie). München

[u.a.]: Oldenbourg 1895.

Twenhofel WH, Shrock RR. Invertebrate Paleontology. New York: McGraw-Hill Book 1935.

Lull RS. Organic evolution. New York: The Macmillan company 1947.

Decugis H. Le viellissement du monde vivant. Paris: Masson et C-i. 1943.

Jepsen GL. Selection, “Orthogenesis”, and Fossil Record. Proceedings of the American Philosophical Society 1949; 93, 6: 479-501.

Blagoveshensky AV, Alexandrova EG. Biochimicheskiye osnovy filogenii visshekh rasteniy. Moscow: Nauka 1974. 1969. 440 6. (In Russian. “Causes of extinction of organisms”).

Davitashwilli LSh. Istoria evolutionnoy paleontologii ot Darwina do nashikh dney. M.L.: AN SSSR 1948. 575 6. (In Russian. “History of evolutionary paleontology from Darwin up to today”).

Bonis L de. Evolution et extinction dans le règne animal. Paris: Masson 1991.

Clarkson ENK. Invertebrate Paleontology and Evolution. Blackwell Science Ltd. 1998.

Donovan DT. Ammonites in 1991. In: House MR (ed) The Ammonoidea: Environment, Ecology and Evolutionary Change. Systematics Association Special Volume. 1993. No 47. Oxford: Clarendon Press, pp. 1-12.

Cope ED. Primary factors of organic evolution. Chicago: Open Court Publishing 1896.

Depéret Ch. Les Transformations du monde animal. Paris: E. Flammarion 1907.

Döderlein L. Phylogenetische Betrachtungen. Biologisches Centralblatt 1888; 7: 394-402.

Abel O. Die biologische Tragheitsgesetz. Biologia generalis 1928 ; IV: 1-102.

Dollo L. Les lois de l'évolution. Bulletin de la société belge de géologie, de paléontologie et hydrologie 1893 7: 164-166.

Rosa D de. L’Ologénèse. Nouvelle théorie de l’évolution et de la distribution géografique des êtres vivants. Paris: Libraire Félix Alcan 1931.

Hone DWE, Keesey TM, Pisani D, Purvis A. Macroevolutionary trends in the Dinosauria: Cope's rule.Journal of Evolutionary Biology 2005; 18: 587- 605.Krasilov VA, Zubakov VA, Shuldinner VI, Remizovsky VI. Ecostratigraphia. Teoria i metody. Vladivostok: DVNZ RAN 1985. 148 6. (In Russian. « Ecostratigraphy. Theory and methods »).

Walliser O. Towards a more critical approach to bioevents. In: Walliser O (ed) Global bioevents in Earth History. Berlin: Springer Verlag 1986. pp. 5-16.

Walliser O. Patterns and Causes of Global Events. In: Walliser O (ed) Global and Event Stratigraphy in the Phanerozoic. Berlin: Springer 1996. pp. 7-19. http://dx.doi.org/10.1007/978-3-642-79634-0_2

Alexeev AS. Massoviye vimiraniya v fanerozoye. Dr. thesis. 1998. 76 6. (In Russian. Mass extinctions in Phanerozoic).

Zherikhin VV. Izbranniye trudy po paleoecologii M, KMK. 2003. 542 6. (In Russian. “Selected papers on paleontology”).

Alvarez LW, Alvarez W, Asaro F, Michel H. Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. Science 1980; 208, 4448: 1095-1108. http://dx.doi.org/10.1126/science.208.4448.1095

Boucot AJ. Evolution and extinction rate controls. Amsterdam. New York: Elsevier Scientific Pub. Co. 1975.

Popov I. The problem of constraints on variation, from Darwin to the present. Ludus Vitalis 2009; XVII, 32: 201-220.

Maynard Smith J, Burian R, Kauffman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L. Developmental constraints and evolution. The Quarterly Review of Biology 1985; 60: 265-287.

Arthur W. The origin of Animal Body Plans. A study in Evolutionary Developmental biology. Cambridge: Cambridge University Press 1997. http://dx.doi.org/10.1017/CBO9781139174596

Thompson DW. On Growth and Form. Cambridge: Cambridge Univ. Press 2004 (1 ed. 1917, 2 ed. 1942) (sixth printing of 1961 ed.).

Lwoff A. L’évolution phisiologique. Étude des pertes de fonction chez les microorganisms. Actual. Sc. Industr. 1944; 970: 1-308.

Saunders WB, Ward PD. Ecology, Distribution and Population Characteristics of Nautilus. In: Saunders WB, Landman NH (eds). Nautilus. The Biology and Paleobiology of a Living Fossil. New York: Plenum press 1987. pp 137- 162.

Hewit RA. Relation of shell strength to evolution in the Ammonoidea. In: House MR (ed) The Ammonoidea: Environment, Ecology and Evolutionary Change. Systematics Association Special Volume. No 47. Oxford: Clarendon Press 1993. pp. 35-56.

Calloman J. Jurassic ammonites: real phylogeny in real time. In: The Lyell Meeting: Approaches to Reconstructing Phylogeny. The Geological Society, Burlington House, 2002. p. 7.

de Vries H. Die mutationstheorie. Versuche und beobachtungen über die entstehung von arten im pflanzenreich. Leipzig: Veit & comp 1901-03.

Olovnikov A. Telomeres, telomerase, and aging: Origin of the theory. Experimental Gerontology 1996; 31, 4: 443-448. http://dx.doi.org/10.1016/0531-5565(96)00005-8

Finch CE. Longevity, Senescence, and the Genome. Chicago: University of Chicago Press 1990.

Finch CE. Update on slow aging and negligible senescence - a mini-review. Gerontology 2009; 55: 307-313. http://dx.doi.org/10.1159/000215589

Popov I, Ostrovsky A. Differences in the Lifespan of the Freshwater Pearl Mussel Margaritifera margaritifera as Evidence for the Infeasibility of Negligible Senescence (Based on Data for St. Petersburg and Leningrad Oblast). Advances in Gerontology 2011; 1,2, pp. 191-197. http://dx.doi.org/10.1134/S2079057011020135

Mele J, Edrey YH, Lewis KN, Buffenstein R. Mechanisms of aging in the naked mole-rat: the case for programmed aging. Ross. Khim. Zhurn. (Zhurn. Ross. Khim. Ob-va im. D. I. Mendeleeva) 2009; 53, 3: 64-72 (In Russian)

George JC, Bada J, Zeh J, Scott L, Brown SE, O'Hara T, Suydam R. Age and growth estimates of bowhead whales (Balaena mysticetus) via aspartic acid racemization. Canadian Journal of Zoology 1999; 77, 4: 571-580. http://dx.doi.org/10.1139/cjz-77-4-571

Ruiz-Torres A, Beier W. On aging and life span of human species based on its evolution from Australopithecus up to modern human. Open longevity science 2008; 2: 107-113. http://dx.doi.org/10.2174/1876326X00802010107

Downloads

Published

2014-07-25

How to Cite

Popov, I. (2014). Species Senescence and Fractal Properties of Ageing. Journal of Aging and Gerontology, 2(2), 81–93. https://doi.org/10.12974/2309-6128.2014.02.02.3

Issue

Section

Articles