Corpora Amylacea in Aging Brain and Age-Related Brain Disorders
DOI:
https://doi.org/10.12974/2309-6128.2014.02.01.6Keywords:
Corpora amylacea of brain, aging process, neurodegenerative disorders, inclusion.Abstract
Corpora amylacea (CA) are glycoprotein-based hyaline-like bodies that accumulate in normal aging brain, and to an even greater extent, in the brains of patients suffering from a variety of neurodegenerative disorders.
Although many of the histochemical, tinctorial and structural properties of CAs have been described for more than a century and a half since their discovery, their pathogenic mechanisms, their subcellular origins and their functions are still debated. Two main theories have been advanced to explain the formation of CA, respectively the vascular and the metabolic theories, although pathogenically both mechanisms can be involved. The exact cellular source of CA in the nervous system is still under debate, although both a neuronal and glial origin has been suggested due to the presence of cell specific proteins. CAs contain around 90% glucose polymers (polyglucosan or polysaccharides), 3% phosphates and 5% proteins, most of them being aging or stress-related proteins. Ultrastructurally, CAs were described as masses of randomly oriented short linear electron-dense areas, situated in the cytoplasm of fibrous astrocytes, mainly in their distal processes. In transmission light microscopy they appear as circular bodies ranging from less than 2 µm to about 20 µm in diameter, with smooth surface or ragged appearance that typically have a concentric laminated or target-like patterns, with the cores staining rather more densely than the periphery.
Besides their presence in aging brain, in many neurodegenerative disorders some similar structures called polyglicosan bodies, are morphologically indistinguishable from normal CAs, and were described in: Anderson’s disease, adult polyglucosan body disease, inflammatory demyelinating polyneuropathy, diabetic neuropathy, and in the neurons of patients with Lafora progressive myoclonus epilepsy. The differential diagnosis may include all the neuropathological diseases characterized by the production of peculiar materials with special morphology in the elderly.
All together, these data come to show that these “enigmatic bodies” are far from being completely understood, thus further investigations are needed to better explain the brain aging and the pathogenesis of different degenerative neurological diseases, and perhaps they could provide novel therapeutic targets to counteract age-related brain disorders.
References
Botez G, Rami A. Imunorreactivity for Bcl-2 and C- Jun / AP1 in hipocampal corpora amylacea after ischaemia in humans. Neuropathol Appl Neurobiol 2001; 27(6): 474-80. http://dx.doi.org/10.1046/j.1365-2990.2001.00362.x
Erdamar S, Zhu ZQ, Hamilton WJ, Armstrong DL, Grossman RG. Corpora amylacea and heat shock protein 27 in Ammon's horn sclerosis. J Neuropathol Exp Neurol 2000; 59(8): 698-706.
Cavanagh JB. Corpora-amylacea and the family of polyglucosan diseases. Brain Res Brain Res Rev 1999; 29(2- 3): 265-95. http://dx.doi.org/10.1016/S0165-0173(99)00003-X
Singhrao SK, Neal JW, Newman GR. Corpora amylacea could be an indicator of neurodegeneration. Neuropathol Appl Neurobiol 1993; 19(3): 269-76. http://dx.doi.org/10.1111/j.1365-2990.1993.tb00437.x
Song W, Zukor H, Liberman A, Kaduri S, Arvanitakis Z, Bennett DA, et al. Astroglial heme oxygenase-1 and the origin of corpora amylacea in aging and degenerating neural tissues. Exp Neurol 2014; 254C: 78-89. http://dx.doi.org/10.1016/j.expneurol.2014.01.006
Catola G, Achúcarro N. Uber die Enstehung de Amyloidkörperchen in Zentralnervensystem. Virchows Arch f Path Anat 1906; 184: 454–469. http://dx.doi.org/10.1007/BF01999854
Leel-Ossy L. New data on the ultrastructure of the corpus amylaceum (polyglucosan body). Pathol Oncol Res 2001; 7(2): 145-50. http://dx.doi.org/10.1007/BF03032582
Maurizi CP. Choroid plexus portals and a deficiency of melatonin can explain the neuropathology of Alzheimer’s disease. Med Hypotheses 2010; 74:1059-66. http://dx.doi.org/10.1016/j.mehy.2009.12.026
Meng H, Zhang X, Blaivas M, Wang MM. Localization of blood proteins thrombospondin1 and ADAMTS13 to cerebral corpora amylacea. Neuropathology 2009; 29(6): 664-71. http://dx.doi.org/10.1111/j.1440-1789.2009.01024.x
Nam IH, Kim DW, Song H-J, Kim S, Lee KS, Lee YH. Association of Corpora amylacea formation with astrocytes and cerebrospinal fluid in the aged human brain. Korean Journal of Physical Anthropology 2012; 25(4): 177-84. http://dx.doi.org/10.11637/kjpa.2012.25.4.177
Leel-Ossy L. The occurrence of corpus amylaceum (polyglucosan body) in diabetes mellitus. Neuropathology 1995; 15: 108-11. http://dx.doi.org/10.1111/j.1440-1789.1995.tb00251.x
Preissig SH, Buhaug J. Corpora amylacea in cerebrospinal fluid. A source of possible diagnostic error. Acta Cytol 1978; 22(6): 511-4.
Gáti I, Leel-Ossy L. Heat shock protein 60 in corpora amylacea. Pathol Oncol Res 2001; 7(2): 140-4. http://dx.doi.org/10.1007/BF03032581
Kimura T, Takamatsu J, Miyata T, Miyakawa T, Horiuchi S. Localization of identified advanced glycation end-product structures, N epsilon(carboxymethyl)lysine and pentosidine, in age-related inclusions in human brains. Pathol Int 1998; 48(8): 575-9. http://dx.doi.org/10.1111/j.1440-1827.1998.tb03953.x
Schipper HM, Cissé S. Mitochondrial constituents of corpora amylacea and autofluorescent astrocytic inclusions in senescent human brain. Glia 1995; 14(1): 55-64. http://dx.doi.org/10.1002/glia.440140108
Keller JN. Age-related neuropathology, cognitive decline, and Alzheimer's disease. Ageing Res Rev 2006; 5(1): 1-13. http://dx.doi.org/10.1016/j.arr.2005.06.002
Singhrao SK, Morgan BP, Neal JW, Newman GR. A functional role for corpora amylacea based on evidence from complement studies. Neurodegeneration 1995; 4(3): 335-45. http://dx.doi.org/10.1016/1055-8330(95)90024-1
Cavanagh JB. Spinal corpora amylacea and motor neuron disease: a quantitative study. J Neurol Neurosurg Psychiatry 1998; 65(4): 488-91. http://dx.doi.org/10.1136/jnnp.65.4.488
Desnuelle C, Dib M, Garrel C, Favier A. A double-blind, placebo-controlled randomized clinical trial of alphatocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS riluzole-tocopherol Study Group. Amyotroph Lateral Scler Other Motor Neuron Disord 2001; 2(1): 9-18. http://dx.doi.org/10.1080/146608201300079364
Schipper HM, Cissé S, Stopa EG. Expression of heme oxygenase-1 in the senescent and Alzheimer-diseased brain. Ann Neurol 1995; 37(6): 758-68. http://dx.doi.org/10.1002/ana.410370609
Iwaki T, Hamada Y, Tateishi J. Advanced glycosylation endproducts and heat shock proteins accumulate in the basophilic degeneration of the myocardium and the corpora amylacea of the glia. Pathol Int 1996; 46(10): 757-63. http://dx.doi.org/10.1111/j.1440-1827.1996.tb03545.x
Chung MH, Horoupian DS. Corpora amylacea: a marker for mesial temporal sclerosis. J Neuropathol Exp Neurol 1996; 55(4): 403-8. http://dx.doi.org/10.1097/00005072-199604000-00002
Radhakrishnan VV, Rao MB, Radhakrishnan K, Thomas SV, Nayak DS, Santoshkumar B, et al. Pathology of temporal lobe epilepsy: An analysis of 100 consecutive surgical specimens from patients with medically refractory epilepsy. Neurol India 1999; 47(3): 196-201.
Frantseva MV, Perez Velazquez JL, Tsoraklidis G, Mendonca AJ, Adamchik Y, Mills LR, Carlen PL, Burnham MW. Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience 2000; 97(3): 431-5. http://dx.doi.org/10.1016/S0306-4522(00)00041-5
Abe H, Yagishita S. Massive appearance of corpora amylacea in postnatal anoxic encephalopathy. Clin Neuropathol 1995; 14(4): 207-10.
Cullen KM, Halliday GM. Chronic alcoholics have substantial glial pathology in the forebrain and diencephalon. Alcohol Alcohol Suppl 1994; 2: 253-7.
Mansouri A, Demeilliers C, Amsellem S, Pessayre D, Fromenty B. Acute ethanol administration oxidatively damages and depletes mitochondrial DNA in mouse liver, brain, heart, and skeletal muscles: protective effects of antioxidants. J Pharmacol Exp Ther 2001; 298(2): 737-43.
Mehindate K, Sahlas DJ, Frankel D, Mawal Y, Liberman A, Corcos J, et al. Proinflammatory cytokines promote glial heme oxygenase-1 expression and mitochondrial iron deposition: implications for multiple sclerosis. J Neurochem 2001; 77(5): 1386-95. http://dx.doi.org/10.1046/j.1471-4159.2001.00354.x
Larnaout A, Belal S, Zouari M, Fki M, Ben Hamida C, Goebel HH, et al. Friedreich's ataxia with isolated vitamin E deficiency: a neuropathological study of a Tunisian patient. Acta Neuropathol 1997; 93(6): 633-7. http://dx.doi.org/10.1007/s004010050662
Schulz JB, Dehmer T, Schöls L, Mende H, Hardt C, Vorgerd M, et al. Oxidative stress in patients with Friedreich ataxia. Neurology 2000; 55(11): 1719-21. http://dx.doi.org/10.1212/WNL.55.11.1719
Calabrese V, Scapagnini G, Giuffrida Stella AM, Bates TE, Clark JB. Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem Res 2001; 26(6): 739-64. http://dx.doi.org/10.1023/A:1010955807739
Averback P. Parasynaptic corpora amylacea in the striatum. Arch Pathol Lab Med 1981; 105(6): 334-5.
Sahlas DJ, Liberman A, Schipper HM. Role of heme oxygenase-1 in the biogenesis of corpora amylacea. Biogerontology 2002; 3(4): 223-31. http://dx.doi.org/10.1023/A:1016223109601
Ham D, Schipper HM. Heme oxygenase-1 induction and mitochondrial iron sequestration in astroglia exposed to amyloid peptides. Cell Mol Biol (Noisy-le-grand) 2000; 46(3): 587-96.
Iijima N, Tamada Y, Hayashi S, Tanaka M, Ishihara A, Hasegawa M, et al. Expanded expression of heme oxygenase-1 (HO-1) in the hypothalamic median eminence of aged as compared with young rats: an immunocytochemical study. Neurosci Lett 1999; 271(2): 113-6. http://dx.doi.org/10.1016/S0304-3940(99)00543-1
Mrak RE, Sheng JG, Griffin WS. Glial cytokines in Alzheimer's disease: review and pathogenic implications. Hum Pathol 1995; 26(8): 816-23. http://dx.doi.org/10.1016/0046-8177(95)90001-2
Schipper HM, Bernier L, Mehindate K, Frankel D. Mitochondrial iron sequestration in dopamine-challenged astroglia: role of heme oxygenase-1 and the permeability transition pore. J Neurochem 1999; 72(5): 1802-11. http://dx.doi.org/10.1046/j.1471-4159.1999.0721802.x
Schmidt J, Mertz K, Morgan JI. Regulation of heme oxygenase-1 expression by dopamine in cultured C6 glioma and primary astrocytes. Brain Res Mol Brain Res 1999; 73(1- 2): 50-9. http://dx.doi.org/10.1016/S0169-328X(99)00231-4
Zhang J, Piantadosi CA. Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. J Clin Invest 1992; 90(4): 1193-9. http://dx.doi.org/10.1172/JCI115980
Brawer JR, Reichard G, Small L, Schipper HM. The origin and composition of peroxidase-positive granules in cysteamine-treated astrocytes in culture. Brain Res 1994a; 633(1-2): 9-20. http://dx.doi.org/10.1016/0006-8993(94)91516-4
Brawer JR, Stein R, Small L, Cissé S, Schipper HM. Composition of Gomori-positive inclusions in astrocytes of the hypothalamic arcuate nucleus. Anat Rec 1994b; 240(3): 407-15. http://dx.doi.org/10.1002/ar.1092400313
Chopra VS, Moozar KL, Mehindate K, Schipper HM. A cellular stress model for the differential expression of glial lysosomal cathepsins in the aging nervous system. Exp Neurol 1997; 147(2): 221-8. http://dx.doi.org/10.1006/exnr.1997.6616
Schipper HM, Cissé S, Walton PA. Colocalization of organelle-specific proteins to autofluorescent astrocyte granules by laser scanning confocal microscopy. Exp Cell Res 1993; 207(1): 62-7. http://dx.doi.org/10.1006/excr.1993.1163
Schipper HM. Mitochondrial iron deposition in aging astroglia: mechanisms and disease implications. In: Ebadi M, Marwah J and Chopra R, Eds. Mitochondrial Ubiquinone (Coenzyme Q10): Biochemical, Functional, Medical, and Therapeutic Aspects in Human Health and Diseases, Scottsdale, Arizona, Prominent Press 2001; pp. 267–80.
Schipper HM, Kotake Y, Janzen EG. Catechol oxidation by peroxidase-positive astrocytes in primary culture: an electron spin resonance study. J Neurosci 1991; 11(7): 2170-6.
Frankel D, Mehindate K, Schipper HM. Role of heme oxygenase-1 in the regulation of manganese superoxide dismutase gene expression in oxidatively-challenged astroglia. J Cell Physiol 2000; 185(1): 80-6. http://dx.doi.org/10.1002/1097-4652(200010)185:1<80::AIDJCP7> 3.0.CO;2-W
Manganaro F, Chopra VS, Mydlarski MB, Bernatchez G, Schipper HM. Redox perturbations in cysteamine-stressed astroglia: implications for inclusion formation and gliosis in the aging brain. Free Radic Biol Med 1995; 19(6): 823-35. http://dx.doi.org/10.1016/0891-5849(95)02008-X
Wilson JX. Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 1997; 75(10-11): 1149-63. http://dx.doi.org/10.1139/y97-146
Cissé S, Schipper HM. Experimental induction of corpora amylacea-like inclusions in rat astroglia. Neuropathol Appl Neurobiol 1995; 21(5): 423-31. http://dx.doi.org/10.1111/j.1365-2990.1995.tb01079.x
Mydlarski MB, Schipper HM. Stress protein co-localization to autofluorescent astrocytic inclusions in situ and in cysteamine- treated glial cultures. Brain Res 1993; 627(1): 113-21. http://dx.doi.org/10.1016/0006-8993(93)90754-B
Wilhelmus MM, Verhaar R, Bol JG, van Dam AM, Hoozemans JJ, Rozemuller AJ, et al. Novel role of transglutaminase 1 in corpora amylacea formation? Neurobiol Aging 2011; 32(5): 845-56. http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.019
Fesus L, Piacentini M. Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 2002; 27(10): 534-9. http://dx.doi.org/10.1016/S0968-0004(02)02182-5
Lorand L, Graham RM. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 2003; 4(2): 140-56. http://dx.doi.org/10.1038/nrm1014
Buervenich S, Olson L, Galter D. Nestin like immunoreactivity of corpora amylacea in aged human brain. Brain Res Mol 2001; 94 (1-2): 204-8. http://dx.doi.org/10.1016/S0169-328X(01)00166-8
Loeffler KU, Edward DP, Tso MO. Tau-2 immunoreactivity of corpora amylacea in the human retina and optic nerve. Invest Ophthalmol Vis Sci 1993; 34(8): 2600-3.
Selmaj K, Paw????owska Z, Walczak A, Kozio????kiewicz W, Raine CS, Cierniewski CS. Corpora amylacea from multiple sclerosis brain tissue consists of aggregated neuronal cells. Acta Biochim Pol 2008; 55(1): 43-9.
Singhrao SK, Neal JW, Piddlesden SJ, Newman GR. New immunocytochemical evidence for a neuronal/ oligodendroglial origin for corpora amylacea. Neuropathol Appl Neurobiol 1994; 20: 66–73. http://dx.doi.org/10.1111/j.1365-2990.1994.tb00958.x
Cissé S, Perry G, Lacoste-Royal G, Cabana T, Gauvreau D. Immunochemical identification of ubiquitin and heat-shock proteins in corpora amylacea from normal aged and Alzheimer's disease brains. Acta Neuropathol 1993; 85(3): 233-40. http://dx.doi.org/10.1007/BF00227716
Martin JE, Mather K, Swash M, Garofalo O, Leigh PN, Anderton BH. Heat shock protein expression in corpora amylacea in the central nervous system: clues to their origin. Neuropathol Appl Neurobiol 1991; 17(2): 113-9. http://dx.doi.org/10.1111/j.1365-2990.1991.tb00702.x
Hirano A: Some fine structural alterations of the central nervous system in aging. In: Környey St, Tariska St, Gosztonyi G, Eds. Proc. 7th Internat. Congr. Neuropathol. Excerpta Med. Amsterdam. Budapest: Akadémiai Kiadó 1975, pp. 83-90.
Leel-Ôssy L: Pathological significance and characteristics of corpus amylaceum. Neuropathol. (Japan) 1991; 11: 105-114.
Schochet SS, Jr: Neuronal inclusions. In: Bourne GH, Eds. Structure and function of nervous tissue. Vol. 4. New York: Academic Press 1972, pp. 129-77. http://dx.doi.org/10.1016/B978-0-12-119284-6.50009-9
Tuñón T, Bengoechea O, Narbona J. Glycogenosis with amylopectinoid deposits in a 13-year-old girl. Clin Neuropathol 1988; 7(3): 100-4.
Anzil AP, Herrlinger H, Blinzinger K, Kronski D. Intraneuritic corpora amylacea. Demonstration in orbital cortex of elderly subjects by means of early postmortem brain sampling and electron microscopy. Virchows Arch A Pathol Anat Histol 1974; 364(4): 297-301. http://dx.doi.org/10.1007/BF00432727
Tani E, Evans JP. Electron microscope studies of cerebral swelling. II. Alterations of myelinated nerve fibres. Acta Neuropathol 1965; 4(6): 604-23. http://dx.doi.org/10.1007/BF00691212
Takahashi K, Agari M, Nakamura H. Intra-axonal Corpora amylacea in ventral and lateral horns of the spinal cord. Acta Neuropathol 1975; 31(2): 151-8. http://dx.doi.org/10.1007/BF00688149
Suzuki A, Yokoo H, Kakita A, Takahashi H, Harigaya Y, Ikota H, et al. Phagocytized corpora amylacea as a histological hallmark of astrocytic injury in neuromyelitis optica. Neuropathology 2012; 32(6): 587-94. http://dx.doi.org/10.1111/j.1440-1789.2012.01299.x
Notter T, Knuesel I. Reelin immunoreactivity in neuritic varicosities in the human hippocampal formation of nondemented subjects and Alzheimer's disease patients. Acta Neuropathol Commun 2013; 1(1): 27. http://dx.doi.org/10.1186/2051-5960-1-27
Leel-Ôssy L. Further observation on the structure and nature of the corpus amylaceum. Zbl allg Pathol pathol Anat 1986; 27: 131-395.
Sakai M, Austin J, Witmer F, Trueb L. Studies of corpora amylacea. I. Isolation and preliminary characterization by chemical and histochemical techniques. Arch Neurol 1969; 21(5): 526-44. http://dx.doi.org/10.1001/archneur.1969.00480170098011
Gati I, Leel-Ossy L. Corpus amylaceum (polyglucosan body) in the peripheral olfactory system. Pathol Oncol Res 2001; 7: 140-4.
Hoyaux D, Decaestecker C, Heizmann CW, Vogl T, Schäfer BW, Salmon I, et al. S100 proteins in Corpora amylacea from normal human brain. Brain Res 2000; 867(1-2): 280-8. http://dx.doi.org/10.1016/S0006-8993(00)02393-3
Nolan CC, Brown AW. Reversible neuronal damage in hippocampal pyramidal cells with triethyllead: the role of astrocytes. Neuropathol Appl Neurobiol 1989; 15(5): 441-57. http://dx.doi.org/10.1111/j.1365-2990.1989.tb01245.x
Tate-Ostroff B, Majocha RE, Marotta CA. Identification of cellular and extracellular sites of amyloid precursor protein extracytoplasmic domain in normal and Alzheimer disease brains. Proc Natl Acad Sci U S A 1989; 86(2): 745-9. http://dx.doi.org/10.1073/pnas.86.2.745
Jackson MC, Scollard DM, Mack RJ, Lenney JF. Localization of a novel pathway for the liberation of GABA in the human CNS. Brain Res Bull 1994; 33(4): 379-85. http://dx.doi.org/10.1016/0361-9230(94)90280-1
Stam FC, Roukema PA. Histochemical and biochemical aspects of corpora amylacea. Acta Neuropathol 1973; 25(2): 95-102. http://dx.doi.org/10.1007/BF00687554
Balea IA, Illes P, Schobert R. Affinity of corpora amylacea for oligonucleotides: sequence dependency and proteinaceous binding motif. Neuropathology 2006; 26(4): 277-82. http://dx.doi.org/10.1111/j.1440-1789.2006.00695.x
Tokutake S, Nagase H, Morisaki S, Oyanagi S. X-ray microprobe analysis of corpora amylacea. Neuropathol Appl Neurobiol 1995; 21(3): 269-73. http://dx.doi.org/10.1111/j.1365-2990.1995.tb01059.x
Ramsey HJ: Ultrastructure of corpora amylacea. J Neuropathol Exp Neurol 1965; 24: 25-39. http://dx.doi.org/10.1097/00005072-196501000-00003
Palmucci L, Anzil AP, Luh S. Intra-astrocytic glycogen granules and corpora amylacea stain positively for polyglucosans: a cytochemical contribution on the fine structural polymorphism of particulate polysaccharides. Acta Neuropathol 1982; 57(2-3): 99-102. http://dx.doi.org/10.1007/BF00685376
Sbarbati A, Carner M, Colletti V, Osculati F. Extrusion of corpora amylacea from the marginal gila at the vestibular root entry zone. J Neuropathol Exp Neurol 1996; 55(2): 196- 201. http://dx.doi.org/10.1097/00005072-199602000-00008
Daems WTh, Perslin JP. Demonstration of PAS-positive material in electron microscopy with lead staining. Histochemie 1962; 3: 79-88. http://dx.doi.org/10.1007/BF00736425
Hara M. Microscopic globular bodies in the human brain. J Neuropathol Exp Neurol 1986; 45(2): 169-78. http://dx.doi.org/10.1097/00005072-198603000-00007
Ikeda K, Kosaka K, Hori A. Intraneuronal polyglucosan bodies and peculiar inclusions in the midbrain-tegmentum of the aged. Jpn J Psychiatry Neurol 1987; 41(4): 719-23.
Yagishita S, Itoh Y, Nakano T, Amano N, Yokoi S, Hasegawa O, et al. Pleomorphic intra-neuronal polyglucosan bodies mainly restricted to the pallidium. A case report. Acta Neuropathol 1983; 62(1-2): 159-63. http://dx.doi.org/10.1007/BF00684936
Fawcett DW, Leak LV. Male Reproductive System. In: Hamilton DW, Greep RO, Eds. Hand book of Physiology, Section 7, Endocrinology, Vol. 5. Baltimore: Williams and Wilkins 1975; pp. 57-94.
Busard HL, Renier WO, Gabreëls FJ, Jaspar HH, Slooff JL, Janssen AJ, et al. Lafora disease: a quantitative morphological and biochemical study of the cerebral cortex. Clin Neuropathol 1987; 6(1): 1-6.
Mrak RE, Griffin ST, Graham DI. Aging-associated changes in human brain. J Neuropathol Exp Neurol 1997; 56(12): 1269-75. http://dx.doi.org/10.1097/00005072-199712000-00001
Schipper HM, Cissé S. Mitochondrial constituents of corpora amylacea and autofluorescent astrocytic inclusions in senescent human brain. Histol Histopathol 2004; 14 (1): 55- 64.
Maqbool A, Tahir M. Corpora Amylacea in human cadaveric brain age related differences. Biomedica 2008; 24(2): 92-5.
Lehesjoki AE, Koskiniemi M, Sistonen P, Miao J, Hästbacka J, Norio R, et al. Localization of a gene for progressive myoclonus epilepsy to chromosome 21q22. Proc Natl Acad Sci U S A 1991; 88(9): 3696-9. http://dx.doi.org/10.1073/pnas.88.9.3696
Mizutani T, Satoh J, Morimatsu Y. Axonal polyglucosan body in the ventral posterolateral nucleus of the human thalamus in relation to ageing. Acta Neuropathol 1987; 74(1): 9-12. http://dx.doi.org/10.1007/BF00688332
Andersen DH. Familial cirrhosis of the liver with storage of abnormal glycogen. Lab Invest 1956; 5(1): 11-20.
Antal M. Lafora bodies in the retina of various animals. J Fr Ophtalmol 1982; 5(10): 615-20.
MacKenzie JM. Polyglucosan bodies are not an unusual finding in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 1993; 56(5): 577. http://dx.doi.org/10.1136/jnnp.56.5.577
Korzhevskii DE, Giliarov AV. Demonstration of nuclear protein NeuN in the human brain corpora amylacea. Morfologiia 2007; 131(2): 75-6.
Renkawek K, Bosman GJ. Anion exchange proteins are a component of corpora amylacea in Alzheimer disease brain. Neuroreport 1995; 6(6): 929-32. http://dx.doi.org/10.1097/00001756-199504190-00026
Liu HM, Anderson K, Caterson B. Demonstration of a keratan sulfate proteoglycan and a mannose-rich glycoconjugate in corpora amylacea of the brain by immunocytochemical and lectin-binding methods. J Neuroimmunol 1987; 14(1): 49-60. http://dx.doi.org/10.1016/0165-5728(87)90100-7
Yan SD, Chen X, Schmidt AM, Brett J, Godman G, Zou YS, et al. Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci U S A 1994; 91(16): 7787-91. http://dx.doi.org/10.1073/pnas.91.16.7787
Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 1994; 269(13): 9889- 97.
Raine CS. The Dale E. McFarlin Memorial Lecture: the immunology of the multiple sclerosis lesion. Ann Neurol 1994; 36 Suppl:S61-72. http://dx.doi.org/10.1002/ana.410360716
Babb TL, Brown WJ. Pathological findings in epilepsy. In: Engel J Jr, Ed. Surgical treatment of the epilepsies. New York: Raven Press 1986, pp 511-540.
Loiseau H, Marchal C, Vital A, Vital C, Rougier A, Loiseau P. Occurrence of polyglucosan bodies in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 1992; 55(11): 1092- 3. http://dx.doi.org/10.1136/jnnp.55.11.1092
Nishio S, Morioka T, Kawamura T, Fukui K, Nonaka H, Matsushima M. Corpora amylacea replace the hippocampal pyramidal cell layer in a patient with temporal lobe epilepsy. Epilepsia 2001; 42(7): 960-2. http://dx.doi.org/10.1046/j.1528-1157.2001.01601.x
Leel-Ossy L. Corpora amylacea in hippocampal sclerosis. J Neurol Neurosurg Psychiatry 1998; 65(4): 614. http://dx.doi.org/10.1136/jnnp.65.4.614
Radhakrishnan A, Radhakrishnan K, Radhakrishnan VV, Mary PR, Kesavadas C, Alexander A, et al. Corpora amylacea in mesial temporal lobe epilepsy: clinicopathological correlations. Epilepsy Res 2007; 74(2-3): 81-90. http://dx.doi.org/10.1016/j.eplepsyres.2007.01.003
Ribeiro Mde C, Barbosa-Coutinho L, Mugnol F, Hilbig A, Palmini A, da Costa JC, et al. Corpora amylacea in temporal lobe epilepsy associated with hippocampal sclerosis. Arq Neuropsiquiatr 2003; 61(4): 942-5. http://dx.doi.org/10.1590/S0004-282X2003000600010
Van Paesschen W, Revesz T, Duncan JS. Corpora amylacea in hippocampal sclerosis. J Neurol Neurosurg Psychiatry 1997; 63(4): 513-5. http://dx.doi.org/10.1136/jnnp.63.4.513
Amador-Ortiz C, Ahmed Z, Zehr C, Dickson DW. Hippocampal sclerosis dementia differs from hippocampal sclerosis in frontal lobe degeneration. Acta Neuropathol 2007; 113(3): 245-52. http://dx.doi.org/10.1007/s00401-006-0183-4
Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 2003; 24(2): 197-211. http://dx.doi.org/10.1016/S0197-4580(02)00065-9
Dodson MW, Guo M. Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease. Curr Opin Neurobiol 2007; 17(3): 331-7. http://dx.doi.org/10.1016/j.conb.2007.04.010
Tofaris GK, Spillantini MG. Physiological and pathological properties of alpha-synuclein. Cell Mol Life Sci 2007; 64(17): 2194-201. http://dx.doi.org/10.1007/s00018-007-7217-5
Fukuda T, Tanaka J, Watabe K, Numoto RT, Minamitani M. Immunohistochemistry of neuronal inclusions in the cerebral cortex and brain-stem in Lewy body disease. Acta Pathol Jpn 1993; 43(10): 545-51.
Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature 1997; 388(6645): 839-40. http://dx.doi.org/10.1038/42166
Moses SW, Parvari R. The variable presentations of glycogen storage disease type IV: a review of clinical, enzymatic and molecular studies. Curr Mol Med 2002; 2(2): 177-88. http://dx.doi.org/10.2174/1566524024605815
Bruno C, van Diggelen OP, Cassandrini D, Gimpelev M, Giuffrè B, Donati MA, et al. Clinical and genetic heterogeneity of branching enzyme deficiency (glycogenosis type IV). Neurology 2004; 63(6): 1053-8. http://dx.doi.org/10.1212/01.WNL.0000138429.11433.0D
Burrow TA, Hopkin RJ, Bove KE, Miles L, Wong BL, Choudhary A, Bali et al. Non-lethal congenital hypotonia due to glycogen storage disease type IV. Am J Med Genet A 2006; 140(8): 878-82. http://dx.doi.org/10.1002/ajmg.a.31166
Brown DH, Brown BI. Studies of the residual glycogen branching enzyme activity present in human skin fibroblasts from patients with type IV glycogen storage disease. Biochem Biophys Res Commun 1983; 111(2): 636-43. http://dx.doi.org/10.1016/0006-291X(83)90354-6
Reed GB Jr, Dixon JF, Neustein JB, Donnell GN, Landing BH. Type IV glycogenosis. Patient with absence of a branching enzyme alpha-1,4-glucan:alpha-1,4-glucan 6- glycosyl transferase. Lab Invest 1968; 19(5): 546-57.
Bruno C, Servidei S, Shanske S, Karpati G, Carpenter S, McKee D, et al. Glycogen branching enzyme deficiency in adult polyglucosan body disease. Ann Neurol 1993; 33(1): 88-93. http://dx.doi.org/10.1002/ana.410330114
Lossos A, Klein CJ, McEvoy KM, Keegan BM. A 63-year-old woman with urinary incontinence and progressive gait disorder. Neurology 2009; 72(18): 1607-13. http://dx.doi.org/10.1212/WNL.0b013e3181a413fe
Mochel F, Schiffmann R, Steenweg ME, Akman HO, Wallace M, Sedel F, et al. Adult polyglucosan body disease: Natural History and Key Magnetic Resonance Imaging Findings. Ann Neurol 2012; 72(3): 433-41. http://dx.doi.org/10.1002/ana.23598
Cafferty MS, Lovelace RE, Hays AP, Servidei S, Dimauro S, Rowland LP. Polyglucosan body disease. Muscle Nerve 1991; 14(2): 102-7. http://dx.doi.org/10.1002/mus.880140203
Gray F, Gherardi R, Marshall A, Janota I, Poirier J. Adult polyglucosan body disease (APBD). J Neuropathol Exp Neurol 1988; 47(4): 459-74. http://dx.doi.org/10.1097/00005072-198807000-00007
Okamoto K, Llena JF, Hirano A. A type of adult polyglucosan body disease. Acta Neuropathol 1982; 58(1): 73-7. http://dx.doi.org/10.1007/BF00692701
Robitaille Y, Carpenter S, Karpati G, DiMauro SD. A distinct form of adult polyglucosan body disease with massive involvement of central and peripheral neuronal processes and astrocytes: a report of four cases and a review of the occurrence of polyglucosan bodies in other conditions such as Lafora's disease and normal ageing. Brain 1980; 103(2): 315-36. http://dx.doi.org/10.1093/brain/103.2.315
Girard JM, Stone SS, Lohi H, Blaszykowski C, Teixeira C, Turnbull J, et al. Phosphorylation prevents polyglucosan transport in Lafora disease. Neurology 2012; 79(1): 100-2. http://dx.doi.org/10.1212/WNL.0b013e31825dcdac
Van Reeth PC, Perier O, Coers C, Van Bogaert L. Pick's dementia associated with atypical amyotrophic lateral sclerosis. (Anatomoclinical study). Acta Neurol Belg 1961; 61: 309-25.
Okamoto K, Mizuno Y, Fujita Y. Bunina bodies in amyotrophic lateral sclerosis. Neuropathology 2008; 28(2): 109-15. http://dx.doi.org/10.1111/j.1440-1789.2007.00873.x
Piao YS, Wakabayashi K, Kakita A, Yamada M, Hayashi S, Morita T, et al. Neuropathology with clinical correlations of sporadic amyotrophic lateral sclerosis: 102 autopsy cases examined between 1962 and 2000. Brain Pathol 2003; 13(1): 10-22. http://dx.doi.org/10.1111/j.1750-3639.2003.tb00002.x
Rowland LP. T.L. Bunina, Asao Hirano, and the post mortem cellular diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2009; 10(2): 74-8. http://dx.doi.org/10.1080/17482960802382321
Okamoto K, Morimatsu M, Hirai S, Ishida Y. Intracytoplasmic inclusions (Bunina bodies) in amyotrophic lateral sclerosis. Acta Pathol Jpn 1980; 30(4): 591-7.
Okamoto K, Morimatsu M, Hirai S, Nogiwa E, Ishida Y. Intracytoplasmic inclusions (Bunina bodies) observed in a case of amyotrophic lateral sclerosis (author's transl). Rinsho Shinkeigaku 1979; 19(3): 174-82.
Sasaki S, Iwata M. Immunocytochemical and ultrastructural study of the motor cortex in patients with lower motor neuron disease. Neurosci Lett 2000; 281(1): 45-8. http://dx.doi.org/10.1016/S0304-3940(00)00789-8
Okamoto K, Hirai S, Amari M, Watanabe M, Sakurai A. Bunina bodies in amyotrophic lateral sclerosis immunostained with rabbit anti-cystatin C serum. Neurosci Lett 1993; 162(1-2): 125-8. http://dx.doi.org/10.1016/0304-3940(93)90576-7
Chou SM. Neuropathology of amyotrophic lateral sclerosis: new perspectives on an old disease. J Formos Med Assoc 1997; 96(7): 488-98.
Tomonaga M, Saito M, Yoshimura M, Shimada H, Tohgi H. Ultrastructure of the Bunina bodies in anterior horn cells of amyotrophic lateral sclerosis. Acta Neuropathol 1978; 42(2): 81-6. http://dx.doi.org/10.1007/BF00690971
Sasaki S, Maruyama S. Ultrastructural study of Bunina bodies in the anterior horn neurons of patients with amyotrophic lateral sclerosis. Neurosci Lett 1993; 154(1-2): 117-20. http://dx.doi.org/10.1016/0304-3940(93)90185-N
Mizuno Y, Amari M, Takatama M, Aizawa H, Mihara B, Okamoto K. Transferrin localizes in Bunina bodies in amyotrophic lateral sclerosis. Acta Neuropathol 2006; 112(5): 597-603. http://dx.doi.org/10.1007/s00401-006-0122-4
Stieber A, Chen Y, Wei S, Mourelatos Z, Gonatas J, Okamoto K, et al. The fragmented neuronal Golgi apparatus in amyotrophic lateral sclerosis includes the trans-Golginetwork: functional implications. Acta Neuropathol 1998; 95: 245–53. http://dx.doi.org/10.1007/s004010050794
Yoshida S, Mitani K, Wakayama I, Kihira T, Yase Y. Bunina body formation in amyotrophic lateral sclerosis: a morphometric-statistical and trace element study featuring aluminum. J Neurol Sci 1995; 130(1): 88-94. http://dx.doi.org/10.1016/0022-510X(95)00011-P
Hirano A. Pathology of amyotrophic lateral sclerosis. In: Gajdosek & Gibbs Eds. Slow latent and temperate virus infections, Bethesda. National Inst. Health. NINDB monograph No.2 1965; pp 23-37.
Galloway PG, Perry G, Kosik KS, Gambetti P. Hirano bodies contain tau protein. Brain Res 1987; 403(2): 337-40. http://dx.doi.org/10.1016/0006-8993(87)90071-0
Gibson PH, Tomlinson BE. Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer's disease. J Neurol Sci 1977; 33(1-2): 199-206. http://dx.doi.org/10.1016/0022-510X(77)90193-9
Laas R, Hagel C. Hirano bodies and chronic alcoholism. Neuropathol Appl Neurobiol 1994; 20(1): 12-21. http://dx.doi.org/10.1111/j.1365-2990.1994.tb00952.x
Martinez-Saez E1, Gelpi E, Rey MJ, Ferrer I, Ribalta T, Botta-Orfila T, et al. Hirano body-rich subtypes of Creutzfeldt- Jakob disease. Neuropathol Appl Neurobiol 2012; 38(2): 153-61. http://dx.doi.org/10.1111/j.1365-2990.2011.01208.x
Mitake S, Ojika K, Hirano A. Hirano bodies and Alzheimer’s disease. Kao Hsiung I Hsueh Ko Hsueh Tsa Chih 1997; 13: 10–18.
Mori H, Tomonaga M, Baba N, Kanaya K. The structure analysis of Hirano bodies by digital processing on electron micrographs. Acta Neuropathol 1986; 71(1-2): 32-7. http://dx.doi.org/10.1007/BF00687959
Ogata J, Budzilovich GN, Cravioto H. A study of rod-like structures (Hirano bodies) in 240 normal and pathological brains. Acta Neuropathol 1972; 21(1): 61-7. http://dx.doi.org/10.1007/BF00688000
Izumiyama N, Ohtsubo K, Tachikawa T, Nakamura H. Elucidation of three-dimensional ultrastructure of Hirano bodies by the quick-freeze, deep-etch and replica method. Acta Neuropathol 1991; 81(3): 248-54. http://dx.doi.org/10.1007/BF00305865
Schochet SS Jr, McCormick WF. Ultrastructure of Hirano bodies. Acta Neuropathol 1972; 21(1): 50-60. http://dx.doi.org/10.1007/BF00687999
Galloway PG, Perry G, Gambetti P. Hirano body filaments contain actin and actin-associated proteins. J Neuropathol Exp Neurol 1987; 46(2): 185-99. http://dx.doi.org/10.1097/00005072-198703000-00006
Goldman JE. The association of actin with Hirano bodies. J Neuropathol Exp Neurol 1983; 42(2): 146-52. http://dx.doi.org/10.1097/00005072-198303000-00004
Jordan-Sciutto K, Dragich J, Walcott D, Bowser R. The presence of FAC1 protein in Hirano bodies. Neuropathol Appl Neurobiol 1998; 24(5): 359-66. http://dx.doi.org/10.1046/j.1365-2990.1998.00140.x
Lee SC, Zhao ML, Hirano A, Dickson DW. Inducible nitric oxide synthase immunoreactivity in the Alzheimer disease hippocampus: association with Hirano bodies, neurofibrillary tangles, and senile plaques. J Neuropathol Exp Neurol 1999; 58(11): 1163-9. http://dx.doi.org/10.1097/00005072-199911000-00006
Makioka K, Yamazaki T, Takatama M, Ikeda M, Okamoto K. Immunolocalization of Smurf1 in Hirano bodies. J Neurol Sci 2014; 336(1-2): 24-8. http://dx.doi.org/10.1016/j.jns.2013.09.028
Peterson C, Kress Y, Vallee R, Goldman JE. High molecular weight microtubule-associated proteins bind to actin lattices (Hirano bodies). Acta Neuropathol 1988; 77(2):1 68-74.
Renkawek K, Bosman GJ, de Jong WW. Expression of small heat-shock protein hsp 27 in reactive gliosis in Alzheimer disease and other types of dementia. Acta Neuropathol 1994; 87(5): 511-9. http://dx.doi.org/10.1007/BF00294178
Schmidt ML, Lee VM, Trojanowski JQ. Analysis of epitopes shared by Hirano bodies and neurofilament proteins in normal and Alzheimer's disease hippocampus. Lab Invest 1989; 60(4): 513-22.
Furgerson M, Fechheimer M, Furukawa R. Model Hirano bodies protect against tau-independent and tau-dependent cell death initiated by the amyloid precursor protein intracellular domain. PLoS One 2012; 7(9): e44996. http://dx.doi.org/10.1371/journal.pone.0044996
Delgado-Escueta AV, Katerina Perez-Gosiengfiao TB, Duron RM, Machado-Salas J, Martinez-Juarez IE, Avila MR. Lafora’s Progressive Myoclonus Epilepsy. In: Lang F, Ed. Encyclopedia of Molecular Mechanisms of Disease. New York: Springer 2009. pp. 1134-1136.
Minassian BA. Lafora's disease: towards a clinical, pathologic, and molecular synthesis. Pediatr Neurol 2001; 25(1): 21-9. http://dx.doi.org/10.1016/S0887-8994(00)00276-9
Chan EM, Bulman DE, Paterson AD, Turnbull J, Andermann E, Andermann F, et al. Genetic mapping of a new Lafora progressive myoclonus epilepsy locus (EPM2B) on 6p22. J Med Genet 2003; 40(9): 671-5. http://dx.doi.org/10.1136/jmg.40.9.671
Suzuki K, David E, Kutschman B. Presenile dementia with "Lafora-like" intraneuronal inclusions. Arch Neurol 1971; 25(1): 69-80. http://dx.doi.org/10.1001/archneur.1971.00490010079011
van Heycoptenhamm, de Jager H. Progressive myoclonus epilepsy with lafora bodies. Clinical-pathological features. Epilepsia 1963; 4: 95-119. http://dx.doi.org/10.1111/j.1528-1157.1963.tb05214.x
Coleman DL, Gambetti P, Mauro SD, Blume RE. Muscle in Lafora disease. Arch Neurol 1974; 31(6): 396-406. http://dx.doi.org/10.1001/archneur.1974.00490420062007
Jenis EH, Schochet SS Jr, Earle KM. Myoclonus epilepsy with Lafora bodies: case report with electron microscopic observation. Mil Med 1970; 135(2): 116-9.
Ramón y Cajal S, Blanes A, Martinez A, Sáenz E, Gutierrez M. Lafora's disease. An ultrastructural and histochemical study. Acta Neuropathol 1974; 30(3): 189-96. http://dx.doi.org/10.1007/BF00688920
Vanderhaeghen JJ. Correlation between ultrastructure and histochemistry of Lafora bodies. Acta Neuropathol 1971; 17(1): 24-36. http://dx.doi.org/10.1007/BF00684738
Collins GH, Cowden RR, Nevis AH. Myoclonus epilepsy with Lafora bodies. An ultrastructural and cytochemical study. Arch Pathol 1968; 86(3): 239-54.
Dubois-Dalcq M. Histochemical study of Lafora's bodies. Acta Neuropathol 1969; 12(3): 205-17. http://dx.doi.org/10.1007/BF00687645
Van Hoof F, Hageman-Bal M. Progressive familial myoclonic epilepsy with Lafora bodies. Electron microscopic and histochemical study of a cerebral biopsy. Acta Neuropathol 1967; 7(4): 315-36. http://dx.doi.org/10.1007/BF00688087
Machado-Salas J, Guevara P, Guevara J, Martínez I, Durón R, Bai D, et al. Neurocytoskeletal features in Lafora disease Null Mutant Mice. Epilepsia 2005; 46 (Suppl 6): 3–415.
Machado-Salas J, Guevara P, Duron R, Avila MR, Bai D, Gentry M. Laforin-deficient mice neuropile. A light and electron microscopy study. Progressive Myoclonic epilepsies; Lafora Disease Symposium; Sarlat, France 2007.
Lewis PD, Evans DJ, Shambayati B. Immunocytochemical and lectin-binding studies on Lafora bodies. Clin Neuropathol 1990; 9(1): 7-9.
Ganesh S, Delgado-Escueta AV, Sakamoto T, Avila MR, Machado-Salas J, Hoshii Y, et al. Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Hum Mol Genet 2002; 11(11): 1251-62. http://dx.doi.org/10.1093/hmg/11.11.1251
Tiberia E, Turnbull J, Wang T, Ruggieri A, Zhao XC, Pencea N, et al. Increased laforin and laforin binding to glycogen underlie Lafora body formation in malin-deficient Lafora disease. J Biol Chem 2012; 287(30): 25650-9. http://dx.doi.org/10.1074/jbc.M111.331611
Turnbull J, DePaoli-Roach AA, Zhao X, Cortez MA, Pencea N, Tiberia E, et al. PTG depletion removes Lafora bodies and rescues the fatal epilepsy of Lafora disease. PLoS Genet 2011; 7(4): e1002037. http://dx.doi.org/10.1371/journal.pgen.1002037
Adler D, Horoupian DS, Towfighi J, Gandolfi A, Suzuki K. Status marmoratus and Bielschowsky bodies. A report of two cases and review of the literature. Acta Neuropathol 1982; 56(1): 75-7. http://dx.doi.org/10.1007/BF00691185
de León GA. Bielschowsky bodies: Lafora-like inclusions associated with atrophy of the lateral pallidum. Acta Neuropathol 1974; 30(3): 183-8. http://dx.doi.org/10.1007/BF00688919
Probst A, Sandoz P, Vanoni C, Baumann JU. Intraneuronal polyglucosan storage restricted to the lateral pallidum (Bielschowsky bodies). A golgi, light, and electron microscopic study. Acta Neuropathol 1980; 51(2): 119-26. http://dx.doi.org/10.1007/BF00690453
Vanderhaeghen JJ, Manil J, Franken L, Cappel R. C2 cases of torsion spasm accompanied by chorioathetosis with numerous Lafora bodies in the external part of the globus pallidus. Acta Neuropathol 1967; 9(1): 45-52. http://dx.doi.org/10.1007/BF00688157
Wilson JD, Horoupian DS. Bielschowsky bodies (Lafora bodies of Bielschowsky type): report of a case associated with Rosenthal fibers in the brain stem. Acta Neuropathol 2001; 102(5): 505-9.
Sugiyama H, Hainfellner JA, Lassmann H, Indravasu S, Budka H. Uncommon types of polyglucosan bodies in the human brain: distribution and relation to disease. Acta Neuropathol 1993; 86(5): 484-90. http://dx.doi.org/10.1007/BF00228584
Hasegawa M. Biochemistry and molecular biology of tauopathies. Neuropathology 2006; 26(5): 484-90. http://dx.doi.org/10.1111/j.1440-1789.2006.00666.x
Uchihara T, Ikeda K, Tsuchiya K. Pick body disease and Pick syndrome. Neuropathology 2003; 23(4): 318-26. http://dx.doi.org/10.1046/j.1440-1789.2003.00523.x
Wang LN, Zhu MW, Feng YQ, Wang JH. Pick's disease with Pick bodies combined with progressive supranuclear palsy without tuft-shaped astrocytes: a clinical, neuroradiologic and pathological study of an autopsied case. Neuropathology 2006; 26(3): 222-30. http://dx.doi.org/10.1111/j.1440-1789.2006.00671.x
Yamakawa K, Takanashi M, Watanabe M, Nakamura N, Kobayashi T, Hasegawa M, et al. Pathological and biochemical studies on a case of Pick disease with severe white matter atrophy. Neuropathology 2006; 26(6): 586-91. http://dx.doi.org/10.1111/j.1440-1789.2006.00738.x
Buée L, Delacourte A. Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick's disease. Brain Pathol 1999; 9(4): 681- 93. http://dx.doi.org/10.1111/j.1750-3639.1999.tb00550.x
Delacourte A, Robitaille Y, Sergeant N, Buée L, Hof PR, Wattez A, et al. Specific pathological Tau protein variants characterize Pick's disease. J Neuropathol Exp Neurol 1996; 55(2): 159-68. http://dx.doi.org/10.1097/00005072-199602000-00004
Delacourte A, Sergeant N, Wattez A, Gauvreau D, Robitaille Y. Vulnerable neuronal subsets in Alzheimer's and Pick's disease are distinguished by their tau isoform distribution and phosphorylation. Ann Neurol 1998; 43(2): 193-204. http://dx.doi.org/10.1002/ana.410430209
King ME, Ghoshal N, Wall JS, Binder LI, Ksiezak-Reding H. Structural analysis of Pick's disease-derived and in vitroassembled tau filaments. Am J Pathol 2001; 158(4): 1481- 90. http://dx.doi.org/10.1016/S0002-9440(10)64099-0
Munoz DG, Dickson DW, Bergeron C, Mackenzie IR, Delacourte A, Zhukareva V. The neuropathology and biochemistry of frontotemporal dementia. Ann Neurol 2003; 54 Suppl 5: S24-8. http://dx.doi.org/10.1002/ana.10571
Kato S, Nakamura H. Presence of two different fibril subtypes in the Pick body: an immunoelectron microscopic study. Acta Neuropathol 1990; 81(2): 125-9. http://dx.doi.org/10.1007/BF00334500
Murayama S, Mori H, Ihara Y, Tomonaga M. Immunocytochemical and ultrastructural studies of Pick's disease. Ann Neurol 1990; 27(4): 394-405. http://dx.doi.org/10.1002/ana.410270407
Sparkman DR, Johnson SA, Hammon KM, Allison PM, White CL 3rd. Isolation of the insoluble straight fibrils of Pick's disease. J Neurol Sci 1987; 80(2-3): 173-84. http://dx.doi.org/10.1016/0022-510X(87)90153-5
Takauchi S, Hosomi M, Marasigan S, Sato M, Hayashi S, Miyoshi K. An ultrastructural study of Pick bodies. Acta Neuropathol 1984; 64(4): 344-8. http://dx.doi.org/10.1007/BF00690400
Armstrong RA, Cairns NJ, Lantos PL. A comparison of histological and immunohistochemical methods for quantifying the pathological lesions of Pick’s disease. Neuropathology 1998; 1 (4): 295–300. http://dx.doi.org/10.1111/j.1440-1789.1998.tb00118.x
Puig B1, Ferrer I, Ludueña RF, Avila J. BetaII-tubulin and phospho-tau aggregates in Alzheimer's disease and Pick's disease. J Alzheimers Dis 2005; 7(3): 213-20.
Rohn TT, Day RJ, Catlin LW, Brown RJ, Rajic AJ, Poon WW. Immunolocalization of an amino-terminal fragment of apolipoprotein E in the Pick's disease brain. PLoS One 2013; 8(12): e80180. http://dx.doi.org/10.1371/journal.pone.0080180
Lewy FH. Paralysis agitans: I. Pathologische anatomie. Handbuch der Neurologie III. Berlin: Springer 1912. pp. 920- 33.
Tretiakoff C. Contribution a l’étude de l’anatomie pathologique du locus niger et soemmering avec quelques déductions relatives á la pathogénie des troubles du tonus musculaire et de la maladie de Parkinson. University of Paris, 1919.
Gibb WR, Lees AJ. The significance of the Lewy body in the diagnosis of idiopathic Parkinson's disease. Neuropathol Appl Neurobiol 1989; 15(1): 27-44. http://dx.doi.org/10.1111/j.1365-2990.1989.tb01147.x
Gibb WR, Scaravilli F, Michund J. Lewy bodies and subacute sclerosing panencephalitis. J Neurol Neurosurg Psychiatry 1990; 53(8): 710-1. http://dx.doi.org/10.1136/jnnp.53.8.710-a
Raghavan R, Khin-Nu C, Brown A, Irving D, Ince PG, Day K, et al. Detection of Lewy bodies in Trisomy 21 (Down's syndrome). Can J Neurol Sci 1993; 20(1): 48-51.
Arawaka S, Saito Y, Murayama S, Mori H. Lewy body in neurodegeneration with brain iron accumulation type 1 is immunoreactive for alpha-synuclein. Neurology 1998; 51(3): 887-9. http://dx.doi.org/10.1212/WNL.51.3.887
Spillantini MG. Parkinson's disease, dementia with Lewy bodies and multiple system atrophy are alphasynucleinopathies. Parkinsonism Relat Disord 1999; 5(4): 157-62. http://dx.doi.org/10.1016/S1353-8020(99)00031-0
Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, et al. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 2000; 290(5493): 985-9. http://dx.doi.org/10.1126/science.290.5493.985
Mori H, Oda M, Komori T, Arai N, Takanashi M, Mizutani T, et al. Lewy bodies in progressive supranuclear palsy. Acta Neuropathol 2002; 104(3): 273-8.
Hayashi S, Wakabayashi K, Ishikawa A, Nagai H, Saito M, Maruyama M, et al. An autopsy case of autosomal-recessive juvenile parkinsonism with a homozygous exon 4 deletion in the parkin gene. Mov Disord 2000; 15(5): 884-8. http://dx.doi.org/10.1002/1531-8257(200009)15:5<884::AIDMDS1019> 3.0.CO;2-8
Mizuno Y, Hattori N, Matsumine H. Neurochemical and neurogenetic correlates of Parkinson's disease. J Neurochem 1998; 71(3): 893-902. http://dx.doi.org/10.1046/j.1471-4159.1998.71030893.x
Mori H, Kondo T, Yokochi M, Matsumine H, Nakagawa- Hattori Y, Miyake T, Suda K, Mizuno Y. Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q. Neurology 1998; 51(3): 890-2. http://dx.doi.org/10.1212/WNL.51.3.890
Forno LS, Langston JW. Lewy bodies and aging: relation to Alzheimer’s and Parkinson’s diseases. Neurodegeneration 1993; 2: 19-24.
Jellinger K. The pathology of parkinsonism. In: Marsden CD, Fahn S, Eds. Movement Disorders 2. London: Butterworths 1987. pp. 124-65.
Dickson DW, Feany MB, Yen SH, Mattiace LA, Davies P. Cytoskeletal pathology in non-Alzheimer degenerative dementia: new lesions in diffuse Lewy body disease, Pick's disease, and corticobasal degeneration. J Neural Transm Suppl 1996; 47: 31-46. http://dx.doi.org/10.1007/978-3-7091-6892-9_2
Popescu A, Lippa CF, Lee VM, Trojanowski JQ. Lewy bodies in the amygdala: increase of alpha-synuclein aggregates in neurodegenerative diseases with tau-based inclusions. Arch Neurol 2004; 61(12): 1915-9. http://dx.doi.org/10.1001/archneur.61.12.1915
Jellinger KA. More frequent Lewy bodies but less frequent Alzheimer-type lesions in multiple system atrophy as compared to age-matched control brains. Acta Neuropathologica 2007; 114(3): 299–303. http://dx.doi.org/10.1007/s00401-007-0227-4
Campbell BC, McLean CA, Culvenor JG, Gai WP, Blumbergs PC, Jäkälä P, Beyreuther K, Masters CL, Li QX. The solubility of alpha-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson's disease. J Neurochem 2001;76(1):87-96. http://dx.doi.org/10.1046/j.1471-4159.2001.00021.x
Lowe J. Lewy bodies. In: Calne DB, Ed. Neurodegenerative Diseases. Philadelphia: W.B. Saunders 1994. pp. 51-69.
Gómez-Tortosa E, Newell K, Irizarry MC, Sanders JL, Hyman BT. alpha-Synuclein immunoreactivity in dementia with Lewy bodies: morphological staging and comparison with ubiquitin immunostaining. Acta Neuropathol 2000; 99(4): 352-7. http://dx.doi.org/10.1007/s004010051135
Sakamoto M, Uchihara T, Hayashi M, Nakamura A, Kikuchi E, Mizutani T, et al. Heterogeneity of nigral and cortical Lewy bodies differentiated by amplified triple-labeling for alphasynuclein, ubiquitin, and thiazin red. Exp Neurol 2002; 177(1): 88-94. http://dx.doi.org/10.1006/exnr.2002.7961
Forno LS. Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol 1996; 55(3): 259-72. http://dx.doi.org/10.1097/00005072-199603000-00001
Gai WP, Yuan HX, Li XQ, Power JT, Blumbergs PC, Jensen PH. In situ and in vitro study of colocalization and segregation of alpha-synuclein, ubiquitin, and lipids in Lewy bodies. Exp Neurol 2000; 166(2): 324-33. http://dx.doi.org/10.1006/exnr.2000.7527
Lennox G, Lowe J, Morrell K, Landon M, Mayer RJ. Antiubiquitin immunocytochemistry is more sensitive than conventional techniques in the detection of diffuse Lewy body disease. J Neurol Neurosurg Psychiatry 1989; 52(1): 67-71. http://dx.doi.org/10.1136/jnnp.52.1.67
Wakabayashi K, Tanji K, Mori F, Takahashi H. The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology 2007; 27(5): 494-506. http://dx.doi.org/10.1111/j.1440-1789.2007.00803.x
Olanow CW, Perl DP, DeMartino GN, McNaught KS. Lewybody formation is an aggresome-related process: a hypothesis. Lancet Neurol 2004; 3(8): 496-503. http://dx.doi.org/10.1016/S1474-4422(04)00827-0
Tanaka M, Kim YM, Lee G, Junn E, Iwatsubo T, Mouradian MM. Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem 2004; 279(6): 4625-31. http://dx.doi.org/10.1074/jbc.M310994200
Shults CW. Lewy bodies. Proc Natl Acad Sci U S A 2006; 103(6): 1661-8. http://dx.doi.org/10.1073/pnas.0509567103
Negri A. Contributo allo studio dell’eziologia della rabbia. Boll. Soc. Med.-Chir. Pavia 1903; 2: 88-115.
Perl DP, Good PF. The pathology of rabies in the central nervous system. In: Baer GM, Ed. The natural history of rabies, 2nd ed. Boca Raton, Florida: CRC Press 1991. pp. 163-190.
Goldwasser RA, Kissling RE. Fluorescent antibody staining of street and fixed rabies virus antigens. Proc Soc Exp Biol Med 1958; 98(2): 219-23. http://dx.doi.org/10.3181/00379727-98-23996
Miyamoto K, Matsumoto S. Comparative studies between pathogenesis of street and fixed rabies infection. J Exp Med 1967; 125(3): 447-56. http://dx.doi.org/10.1084/jem.125.3.447
Sourander P. Cytochemical studies on rabies inclusions (Negri bodies). J Pathol Bacteriol 1956; 72(1): 257-65. http://dx.doi.org/10.1002/path.1700720132
Manghani DK, Dastur DK, Nanavaty AN, Patel R. Pleomorphism of fine structure of rabies virus in human and experimental brain. J Neurol Sci 1986; 75(2): 181-93. http://dx.doi.org/10.1016/0022-510X(86)90093-6
Matsumoto S. Electron microscopy of nerve cells infected with street rabies virus. Virology 1962; 17: 198-202. http://dx.doi.org/10.1016/0042-6822(62)90099-5
Matsumoto S, Schneider LG, Kawai A, Yonezawa T. Further studies on the replication of rabies and rabies-like viruses in organized cultures of mammalian neural tissues. J Virol 1974; 14(4): 981-96.
Lahaye X, Vidy A, Pomier C, Obiang L, Harper F, Gaudin Y, et al. Functional characterization of Negri bodies (NBs) in rabies virus-infected cells: Evidence that NBs are sites of viral transcription and replication. J Virol 2009; 83(16): 7948- 58. http://dx.doi.org/10.1128/JVI.00554-09
Ménager P, Roux P, Mégret F, Bourgeois JP, Le Sourd AM, Danckaert A, et al. Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri Bodies. PLoS Pathog 2009; 5(2): e1000315. http://dx.doi.org/10.1371/journal.ppat.1000315