Possible Role of the Transglutaminases in the Pathogenesis of Neurodegenerative Diseases
DOI:
https://doi.org/10.12974/2309-6128.2013.01.01.3Keywords:
Neurodegenerative diseases, post-translational modifications of proteins, protein aggregation, transglutaminases, transglutaminase inhibitors.Abstract
Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. Recently, transglutaminase-catalyzed post-translational modifications of proteins have been shown to be involved in molecular mechanisms responsible for human diseases. Transglutaminase-catalyzed post-translational modifications of proteins have been hypothesized to be involved also in the pathogenetic mechanisms responsible for several human neurodegenerative diseases. Alzheimer’s disease and other neurodegenerative diseases, such as Parkinson’s disease, supranuclear palsy, Huntington’s disease, and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This review focuses on the possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of Alzheimer’s disease and other neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity.
References
Folk JE. Mechanism and basis for specificity of transglutaminase-catalyzed ????-(????-glutamyl)lysine bond formation. Adv Enzymol Relat Areas Mol Biol 1983; 54: 1-56 http://dx.doi.org/10.1002/9780470122990.ch1
Lorand L, Conrad SM. Transglutaminases. Mol Cell Biochem 1984; 58: 9-35. http://dx.doi.org/10.1007/BF00240602
Piacentini M, Martinet N, Beninati S, Folk JE. Free and protein conjugated-polyamines in mouse epidermal cells. Effect of high calcium and retinoic acid. J Biol Chem 1988; 263: 3790-94.
Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci USA 2004; 101: 4175-79. http://dx.doi.org/10.1073/pnas.0306885101
Fleckenstein B, Qiao SW, Larsen MR, Jung G, Roepstorff P, Sollid LM. Molecular characterization of covalent complexes between tissue transglutaminase and gliadin peptides. J Biol Chem 2004; 279: 17607-16. http://dx.doi.org/10.1074/jbc.M310198200
Achyuthan KE, Greenberg CS. Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase. Role of GTP and calcium ions in modulating activity. J Biol Chem 1987; 262: 1901-906.
Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, et al. A novel function of tissue-type transglutaminase: protein disulfide isomerase. Biochem J 2003; 373: 793-803. http://dx.doi.org/10.1042/BJ20021084
Lahav J, Karniel E, Bagoly Z, Sheptovitsky V, Dardik R, Inbal A. Coagulation factor XIII serves as protein disulfide isomerase. Thromb Haemost 2009; 101: 840-44.
Ismaa SE, Mearns BM, Lorand L, Graham RM. Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 2009; 89: 991-1023. http://dx.doi.org/10.1152/physrev.00044.2008
Smethurst PA, Griffin M. Measurement of tissue transglutaminase activity in a permeabilized cell system: its regulation by calcium and nucleotides. Biochem J 1996; 313: 803-808. PMID:8611158
Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K, et al. Gh: a GTP-binding protein with transglutaminase activity and receptor signalling function. Science 1994; 264: 1593-96. http://dx.doi.org/10.1126/science.7911253
Gentile V, Porta R, Chiosi E, Spina A, Caputo I, Valente F, et al. Tissue transglutaminase and adenylate cyclase interactions in Balb-C 3T3 fibroblast membranes. Biochim Biophys Acta 1997; 1357: 115-22. http://dx.doi.org/10.1016/S0167-4889(97)00024-4
Nanda N, Iismaa SE, Owens WA, Husain A, Mackay F, Graham RM. Targeted inactivation of Gh/tissue transglutaminase II. J Biol Chem 2001; 276: 20673-78. http://dx.doi.org/10.1074/jbc.M010846200
Mian S, El Alaoui S, Lawry J, Gentile V, Davies PJA, Griffin M. The importance of the GTP binding protein tissue transglutaminase in the regulation of cell cycle progression. FEBS Lett 1995; 370: 27-31. http://dx.doi.org/10.1016/0014-5793(95)00782-5
Thomazy V, Fesus L. Differential distribution of tissue transglutaminase in human cells: An immuno histochemical study. Cell Tissue Res 1989; 255: 215-24.
Bailey CDC, Johnson GVW. Developmental regulation of tissue transglutaminase in the mouse forebrain. J Neurochem 2004; 91: 1369-79. http://dx.doi.org/10.1111/j.1471-4159.2004.02825.x
Kim S-Y, Grant P, Lee JHC, Pant HC, Steinert PM. Differential expression of multiple transglutaminases in human brain. Increased expression and cross-linking by transglutaminase 1 and 2 in Alzheimer's disease. J Biol Chem 1999; 274: 30715-21. http://dx.doi.org/10.1074/jbc.274.43.30715
Thomas H, Beck K, Adamczyk M, Aeschlimann P, Langley M, Oita RC, Thiebach L, Hils M, Aeschlimann D. Transglutaminase 6: a protein associated with central nervous system development and motor function. Amino Acids 2013; 44: 161-77. http://dx.doi.org/10.1007/s00726-011-1091-z
Gentile V, Saydak M, Chiocca EA, Akande N, Birchbickler PJ, Lee KN, et al. Isolation and characterization of cDNA clones to mouse macrophage and human endothelial cell tissue transglutaminase. J Biol Chem 1991; 266: 478-83.
Monsonego A, Shani Y, Friedmann I, Paas Y, Eizenberg O, Schwartz M. Expression of GTP-dependent and GTPindependent tissue-type transglutaminase in cytokine-treated rat brain astrocytes. J Biol Chem 1997; 272: 3724-32. http://dx.doi.org/10.1074/jbc.272.6.3724
Lai T-S, Liu Y, Weidong L, Greenberg C. Identification of two GTP independent alternatively spliced forms of tissue transglutaminase in human leukocytes, vascular smooth muscle, and endothelial cells. FASEB J 2007; 21: 4131-34 http://dx.doi.org/10.1096/fj.06-7598com
Citron BA, Santa Cruz KS, Davies PJ, Festoff BW. Intronexon swapping of transglutaminase mRNA and neuronal tau aggregation in Alzheimer's disease. J Biol Chem 2001; 276: 3295-301. http://dx.doi.org/10.1074/jbc.M004776200
Phatak VM, Croft SM, Rameshaiah Setty SG, Scarpellini A, Hughes DC, Rees R, et al. Expression of transglutaminase-2 isoforms in normal human tissues and cancer cell lines: dysregulation of alternative splicing in cancer. Amino Acids 2013; 44: 33-44. http://dx.doi.org/10.1007/s00726-011-1127-4
De Laurenzi V, Melino G. Gene disruption of tissue transglutaminase. Mol Cell Biol 2001; 21: 148-55. http://dx.doi.org/10.1128/MCB.21.1.148-155.2001
Lorand L, Graham RM. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nature Mol Cell Biol 2003; 4: 140-56. http://dx.doi.org/10.1038/nrm1014
Adams RD, Victor M. Principles of Neurology. McGraw-Hill, Inc. Ed. 1993.
Selkoe DJ, Abraham C, Ihara Y. Alzheimer’s disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea. Proc Natl Acad Sci USA 1982; 79: 6070-74. http://dx.doi.org/10.1073/pnas.79.19.6070
Grierson AJ, Johnson GV, Miller CC. Three different human ???? isoforms and rat neurofilament light, middle and heavy chain proteins are cellular substrates for transglutaminase. Neurosci Lett 2001; 298: 9-12. http://dx.doi.org/10.1016/S0304-3940(00)01714-6
Dudek SM, Johnson GV. Transglutaminase catalyzes the formation of sodium dodecyl sulfate-insoluble, Alz-50- reactive polymers of tau. J Neurochem 1993; 61(3): 1159-62. http://dx.doi.org/10.1111/j.1471-4159.1993.tb03636.x
Miller ML, Johnson GV. Transglutaminase cross-linking of the tau protein. J Neurochem 1995; 65(4): 1760-70. http://dx.doi.org/10.1046/j.1471-4159.1995.65041760.x
Appelt DM, Balin BJ. The association of tissue transglutaminase with human recombinant tau results in the formation of insoluble filamentous structures. Brain Res 1997; 745(1-2): 21-31. http://dx.doi.org/10.1016/S0006-8993(96)01121-3
Singer SM, Zainelli GM, Norlund MA, Lee JM, Muma NA. Transglutaminase bonds in neurofibrillary tangles and paired helical filament ???? early in Alzheimer's disease. Neurochem Int 2002; 40: 17-30. http://dx.doi.org/10.1016/S0197-0186(01)00061-4
Appelt DM, Kopen GC, Boyne LJ, Balin BJ. Localization of transglutaminase in hippocampal neurons: implications for Alzheimer's disease. J Histochem Cytochem 1996; 44(12): 1421-7.
Balin BJ, Loewy AG, Appelt DM. Analysis of transglutaminase-catalyzed isopeptide bonds in paired helical filaments and neurofibrillary tangles from Alzheimer's disease. Methods Enzymol 1999: 309: 172-86. http://dx.doi.org/10.1016/S0076-6879(99)09014-X
Wilhelmus MM, Grunberg SC, Bol JG, van Dam AM, Hoozemans JJ, Rozenmuller AJ, et al. Transglutaminases and transglutaminase-catalyzed cross-links colocalize with the pathological lesions in Alzheimer’s disease brain. Brain Pathol 2009; 19(4): 612-22. http://dx.doi.org/10.1111/j.1750-3639.2008.00197.x
Jeitner TM, Matson WR, Folk JE, Blass JP, Cooper AJL. Increased levels of ????-glutamylamines in Huntington disease CSF. J Neurochem 2008; 106: 37-44. http://dx.doi.org/10.1111/j.1471-4159.2008.05350.x
Dudek SM, Johnson GV. Transglutaminase facilitates the formation of polymers of the beta-amyloid peptide. Brain Res 1994; 651(1-2): 129-33. http://dx.doi.org/10.1016/0006-8993(94)90688-2
Hartley DM, Zhao C, Speier AC, Woodard GA, Li S, Li Z, et al. Transglutaminase induces protofibril-like amyloid b-protein assemblies that are protease-resistant and inhibit long-term potentiation. J Biol Chem 2008; 283: 16790-6800. http://dx.doi.org/10.1074/jbc.M802215200
Citron BA, Suo Z, SantaCruz K, Davies PJ, Qin F, Festoff BW. Protein crosslinking, tissue transglutaminase, alternative splicing and neurodegeneration. Neurochem Int 2002; 40: 69-78. http://dx.doi.org/10.1016/S0197-0186(01)00062-6
Junn E, Ronchetti RD, Quezado MM, Kim SY, Mouradian MM. Tissue transglutaminase-induced aggregation of ????- synuclein: Implications for Lewy body formation in Parkinson's disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 2003; 100: 2047-52. http://dx.doi.org/10.1073/pnas.0438021100
Zemaitaitis MO, Lee JM, Troncoso JC, Muma NA. Transglutaminase-induced cross-linking of ???? proteins in progressive supranuclear palsy. J Neuropathol Exp Neurol 2000; 59: 983-89.
Zemaitaitis MO, Kim SY, Halverson RA, Troncoso JC, Lee JM, Muma NA. Transglutaminase activity, protein, and mRNA expression are increased in progressive supranuclear palsy. J Neuropathol Exp Neurol 2003; 62: 173-84.
Iuchi S, Hoffner G, Verbeke P, Djian P, Green H. Oligomeric and polymeric aggregates formed by proteins containing expanded polyglutamine. Proc Natl Acad Sci USA 2003; 100: 2409-14. http://dx.doi.org/10.1073/pnas.0437660100
Gentile V, Sepe C, Calvani M, Melone MAB, Cotrufo R, Cooper AJL, Blass JP, Peluso G. Tissue transglutaminasecatalyzed formation of high-molecular-weight aggregates in vitro is favored with long polyglutamine domains: a possible mechanism contributing to CAG-triplet diseases. Arch Biochem Biophys 1998; 352: 314-21. http://dx.doi.org/10.1006/abbi.1998.0592
Kahlem P, Green H, Djian P. Transglutaminase action imitates Huntington’s disease: selective polymerization of huntingtin containing expanded polyglutamine. Mol Cell 1998; 1: 595-601. http://dx.doi.org/10.1016/S1097-2765(00)80059-3
Karpuj MV, Garren H, Slunt H, Price DL, Gusella J, Becher MW, et al. Transglutaminase aggregates huntingtin into nonamyloidogenic polymers, and its enzymatic activity increases in Huntington’s disease brain nuclei. Proc Natl Acad Sci USA 1999; 96: 7388-93. http://dx.doi.org/10.1073/pnas.96.13.7388
Verhoef LGGC, Lindsten K, Masucci MG, Dantuma NP. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Human Molecular Genetics 2002; 11(22): 2689-700. http://dx.doi.org/10.1093/hmg/11.22.2689
Griffith OW, Larsson A, Meister A. Inhibition of ????- glutamylcysteine synthetase by cystamine: an approach to a therapy of 5-oxoprolinuria (pyroglutamic aciduria). Biochem Biophys Res Commun 1977; 79: 919-25. http://dx.doi.org/10.1016/0006-291X(77)91198-6
Igarashi S, Koide R, Shimohata T, Yamada M, Hayashi Y, Takano H, et al. Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat Genet 1998; 18: 111-17. http://dx.doi.org/10.1038/ng0298-111
Karpuj MV, Becher MW, Springer JE, Chabas D, Youssef S, Pedotti R, et al. Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat Med 2002; 8: 143-49. http://dx.doi.org/10.1038/nm0202-143
Dedeoglu A, Kubilus JK, Jeitner TM, Matson SA, Bogdanov M, Kowall NW, et al. Therapeutic effects of cystamine in a murine model of Huntington's disease. J Neurosci 2002; 22: 8942-50. PMID:12388601
Lesort M, Lee M, Tucholski J, Johnson GVW. Cystamine inhibits caspase activity. Implications for the treatment of polyglutamine disorders. J Biol Chem 2003; 278: 3825-30. http://dx.doi.org/10.1074/jbc.M205812200
Dubinsky R, Gray C. CYTE-I-HD: Phase I Dose Finding and Tolerability Study of Cysteamine (Cystagon) in Huntington’s Disease. Movement Disorders 2006; 21: 530-33. http://dx.doi.org/10.1002/mds.20756
Langman CB, Greenbaum LA, Sarwal M, Grimm P, Niaudet P, Deschênes G, et al. A randomized controlled crossover trial with delayed-release cysteamine bitartrate in nephropathic cystinosis: effectiveness on white blood cell cystine levels and comparison of safety. Clin J Am Soc Nephrol 2012; 7: 1112-20. http://dx.doi.org/10.2215/CJN.12321211
Hadjivassiliou M, Aeschlimann P, Strigun A, Sanders DS, Woodroofe N, Aeschlimann D. Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 2008; 64: 332-43. http://dx.doi.org/10.1002/ana.21450
Krasnikov BF, Kim SY, McConoughey SJ, Ryu H, Xu H, Stavrovskaya I, et al. Transglutaminase activity is present in highly purified nonsynaptosomal mouse brain and liver mitochondria. Biochemistry 2005; 44: 7830-43. http://dx.doi.org/10.1021/bi0500877
Mastroberardino PG, Iannicola C, Nardacci R, Bernassola F, De Laurenzi V, Melino G, et al. 'Tissue' transglutaminase ablation reduces neuronal death and prolongs survival in a mouse model of Huntington's disease. Cell Death and Differentiation 2002; 9: 873-80. http://dx.doi.org/10.1038/sj.cdd.4401093
Davies JE, Rose C, Sarkar S, Rubinsztein DC. Cystamine suppresses polyalanine toxicity in a mouse model of oculopharyngeal muscular dystrophy. Sci Trans Med 2010; 2(34): 34-40. http://dx.doi.org/10.1126/scitranslmed.3000723
Olaisen B, Gedde-Dahl TJR, Teisberg P, Thorsby E, Siverts A, Jonassen R, et al. A structural locus for coagulation factor XIIIA (F13A) is located distal to the HLA region on chromosome 6p in man. Am J Hum Genet 1985; 37: 215-20.
Yamanishi K, Inazawa J, Liew F-M, Nonomura K, Ariyama T, Yasuno H, et al. Structure of the gene for human transglutaminase 1. J Biol Chem 1992; 267: 17858-63.
Gentile V, Davies PJA, Baldini A. The human tissue transglutaminase gene maps on chromosome 20q12 by in situ fluorescence hybridization. Genomics 1994; 20: 295-97. http://dx.doi.org/10.1006/geno.1994.1170
Wang M, Kim IG, Steinert PM, McBride OW. Assignment of the human transglutaminase 2 (TGM2) and transglutaminase 3 (TGM3) genes to chromosome 20q11.2. Genomics 1994; 23: 721-22. http://dx.doi.org/10.1006/geno.1994.1571
Gentile V, Grant F, Porta R, Baldini A. Human prostate transglutaminase is localized on chromosome 3p21.33-p22 by in situ fluorescence hybridization. Genomics 1995; 27: 219-20. http://dx.doi.org/10.1006/geno.1995.1032
Grenard P, Bates MK, Aeschlimann D. Evolution of transglutaminase genes: identification of a transglutaminases gene cluster on human chromosome 15q. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem 2001; 276: 33066- 78. http://dx.doi.org/10.1074/jbc.M102553200
The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosome. Cell 1993; 72: 971-83. http://dx.doi.org/10.1016/0092-8674(93)90585-E
Banfi S, Chung MY, Kwiatkowski TJJr, Ranum LP, McCall AE, Chinault AC, et al. Mapping and cloning of the critical region for the spinocerebellar ataxia type 1 gene (SCA1) in a yeast artificial chromosome contig spanning 1.2 Mb. Genomics 1993; 18: 627-35. http://dx.doi.org/10.1016/S0888-7543(05)80365-9
Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 1996; 14: 277-84. http://dx.doi.org/10.1038/ng1196-277
Pujana MA, Volpini V, Estivill X. Large CAG/CTG repeat templates produced by PCR, usefulness for the DIRECT method of cloning genes with CAG/CTG repeat expansions. Nucleic Acids Res 1998; 1: 1352-53. http://dx.doi.org/10.1093/nar/26.5.1352
Fletcher CF, Lutz CM, O'Sullivan TN, Shaughnessy JDJr, Hawkes R, Frankel WN, Copeland NG, Jenkins NA. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 1996; 87: 607-17. http://dx.doi.org/10.1016/S0092-8674(00)81381-1
Vincent JB, Neves-Pereira ML, Paterson AD, Yamamoto E, Parikh SV, Macciardi F, et al. An unstable trinucleotiderepeat region on chromosome 13 implicated in spinocerebellar ataxia: a common expansion locus. Am J Hum Genet 2000; 66: 819-29. http://dx.doi.org/10.1086/302803
Holmes SE, O’Hearn E, Margolis RL. Why is SCA12 different from other SCAs? Cytogenet Genome Res 2003; 100: 189- 97. http://dx.doi.org/10.1159/000072854
Imbert G, Trottier Y, Beckmann J, Mandel JL. The gene for the TATA binding protein (TBP) that contains a highly polymorphic protein coding CAG repeat maps to 6q27. Genomics 1994; 21: 667-68. http://dx.doi.org/10.1006/geno.1994.1335
La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352: 77- 79. http://dx.doi.org/10.1038/352077a0
Onodera O, Oyake M, Takano H, Ikeuchi T, Igarashi S, Tsuji S. Molecular cloning of a full-length cDNA for dentatorubralpallidoluysian atrophy and regional expressions of the expanded alleles in the CNS. Am J Hum Genet 1995; 57: 1050-60.