Clinical Efficacy of Intravitreal Injection of Dobesilate for Reversing Choroidal Angiogenesis in Age-Related Macular Degeneration 

Authors

  • P. Cuevas Departamento de Investigación, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
  • L.A. Outeiriño Departamento de Oftalmología, Hospital de Día Pío XII, Madrid, Spain
  • C. Azanza Departamento de Oftalmología, Hospital de Día Pío XII, Madrid, Spain
  • J. Angulo Departamento de Investigación, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
  • G. Giménez-Gallego Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain

DOI:

https://doi.org/10.12974/2309-6128.2013.01.01.1

Keywords:

Age-related macular degeneration, Intravitreal Dobesilate, Fibroblast growth factor inhibition.

Abstract

Wet age-related macular degeneration is associated with chronic ischemia and inflammation that upregulate several inflammatory cytokines and growth factors, particularly vascular endothelial growth factor and fibroblast growth factor which promote the growth of choroidal neovascularization. Only with the introduction of drugs that directly inhibit the actions of vascular endothelial growth factor have ophthalmologists been able to offer patients with wet age-related macular degeneration reasonable hope for improvement of vision. However, intravitreal administration of anti-vascular endothelial growth factor drugs could be associated with unexpected ocular and systemic side effects. We present consecutive case series of 64 eyes of 64 patients with wet age-related macular degeneration treated with a single intravitreal injection of Dobesilate, a synthetic fibroblast growth factor inhibitor. The end points were the improvement from baseline visual acuity and normalization of retinal histology at 1 month. Intravitreal Dobesilate injection results in a significant improvement in functional and anatomic outcomes from the first month after injection. There were no cases of treatment-associated complications. 

References

Clemons TE, Milton RC, Klein R, Seddon JM, Ferris FL 3rd; Age-Related Eye Disease Study Research Group Risk factors for the incidence of Advanced Age-Related Macular Degeneration in the Age-Related Eye Disease Study (AREDS) AREDS report no. 19. Ophthalmology 2005; 112: 533-9. http://dx.doi.org/10.1016/j.ophtha.2004.10.047

Ferris FL 3rd, Fine SL, Hyman L. Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol 1984; 102: 1640-2. http://dx.doi.org/10.1001/archopht.1984.01040031330019

Frank RN. Growth factors in age-related macular degeneration: pathogenic and therapeutic implications. Ophthalmic Res 1997; 29: 341-53. http://dx.doi.org/10.1159/000268032

Amin R, Puklin JE, Frank RN. Growth factor localization in choroidal neovascular membranes of age-related macular degeneration. Invest Ophthalmol Vis Sci 1994; 35: 3178-88.

Marneros AG, Fan J, Yokoyama Y, Gerber HP, Ferrara N, Crouch RK, et al. Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. Am J Pathol 2005; 167: 1451-9. http://dx.doi.org/10.1016/S0002-9440(10)61231-X

Brar VS, Sharma RK, Murthy RK, Chalam KV. Bevacizumab neutralizes the protective effect of vascular endothelial growth factor on retinal ganglion cells. Mol Vis. 2010; 16: 1848-53.

Kurihara T, Westenskow PD, Bravo S, Aguilar E, Friedlander M. Targeted deletion of Vegfa in adult mice induces vision loss. J Clin Invest 2012; 122: 4213-7. http://dx.doi.org/10.1172/JCI65157

Stewart MW. The expanding role of vascular endothelial growth factor inhibitors in ophthalmology. Mayo Clin Proc 2012; 87: 77-88. http://dx.doi.org/10.1016/j.mayocp.2011.10.001

Cuevas P, Outeiriño LA, Angulo J, Giménez-Gallego G. Treatment of dry age-related macular degeneration with Dobesilate. BMJ Case Rep 2012; pii: bcr0220125942.

Cuevas P, Outeiriño LA, Angulo J, Giménez-Gallego G. Chronic cystoid macular edema treated with intravitreal Dobesilate. BMJ Case Rep 2012; pii: bcr2012006376.

Cuevas P, Outeiriño La, Azanza C, Angulo J, Giménez- Gallego G. Short-term efficacy of intravitreal Dobesilate in central serous chorioretinopathy. Eur J Med Res 2012; 17: 22.

[Epub ahead of print]. http://dx.doi.org/10.1186/2047-783X-17-22

Cuevas P, Outeiriño LA, Azanza C, Giménez-Gallego G. Intravitreal Dobesilate in the treatment of choroidal neovascularization associated with age-related macular degeneration. Report of two cases. BMJ Case Rep 2012; pii: bcr2012006619.

Cuevas P, Outeiriño La, Angulo J, Giménez-Gallego G. Treatment of Stargardt disease with Dobesilate. BMJ Case Rep 2012; pii: bcr2012007128.

Voelker M, Gelisken F, Ziemssen F, Wachtlin J, Grisanti S. Verteporfin photodynamic therapy for extrafoveal choroidal neovascularisation secondary to age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2005; 243: 1241-6. http://dx.doi.org/10.1007/s00417-005-0021-8

Brown DM, Regillo CD. Anti-VEGF agents in the treatment of neovascular age-related macular degeneration: applying clinical trial results to the treatment of everyday patients. Am J Ophthalmol 2007; 144: 627-37. http://dx.doi.org/10.1016/j.ajo.2007.06.039

Aiello LP, Brucker AJ, Chang S, Cunningham ET Jr, D'Amico DJ, Flynn HW Jr, et al. Evolving guidelines for intravitreous injections. Retina 2004; 24(5Suppl): S3-S19.

Bressler SB. Introduction: Understanding the role of angiogenesis and antiangiogenic agents in age-related macular degeneration. Ophthalmology 2009; 116(10 Suppl): S1-7.

Stone EM. A very effective treatment for neovascular macular degeneration. N Engl J Med 2006; 355: 1493-5. http://dx.doi.org/10.1056/NEJMe068191

Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 2008; 358: 1129-36. http://dx.doi.org/10.1056/NEJMoa0707330

Prager GW, Breuss JM, Steurer S, Mihaly J, Binder BR. Vascular endothelial growth factor (VEGF) induces rapid prourokinase (pro-uPA) activation on the surface of endothelial cells. Blood 2004; 103: 955-62. http://dx.doi.org/10.1182/blood-2003-07-2214

Peters S, Heiduschka P, Julien S, Ziemssen F, Fietz H, Bartz-Schmidt KU, Tübingen Bevacizumab Study Group, Schraermeyer U. Ultrastructural findings in the primate eye after intravitreal injection of bevacizumab. Am J Ophthalmol 2007; 143: 995-1002. http://dx.doi.org/10.1016/j.ajo.2007.03.007

Meyer T, Robles-Carrillo L, Robson T, Langer F, Desai H, Davila M, et al. Bevacizumab immune complexes activate platelets and induce thrombosis in FCGR2A transgenic mice. J Thromb Haemost 2009; 7: 171-81. http://dx.doi.org/10.1111/j.1538-7836.2008.03212.x

Vidinova C, Vidinov N.

[The effect of bevacizumab on the ultrastructure of choroidal neovascular membranes in patients with age-related macular degeneration (AMD)]. Klin Monbl Augenheilkd 2009; 226: 491-5. http://dx.doi.org/10.1055/s-0028-1109429

Papadopoulou DN, Mendrinos E, Mangioris G, Donati G, Pournaras CJ. Intravitreal ranibizumab may induce retinal arteriolar vasoconstriction in patients with neovascular agerelated macular degeneration. Ophthalmology 2009; 116: 1755-61. http://dx.doi.org/10.1016/j.ophtha.2009.03.017

Sacu S, Pemp B, Weigert G, Matt G, Garhofer G, Pruente C, et al. Response of retinal vessels and retrobulbar hemodynamics to intravitreal anti-VEGF treatment in eyes with branch retinal vein occlusion. Invest Ophthalmol Vis Sci 2011; 52: 3046-50. http://dx.doi.org/10.1167/iovs.10-5842

Soliman W, Vinten M, Sander B, Soliman KA, Yehya S, Rahman MS, et al. Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema. Acta Ophthalmol 2008; 86: 365- 71. http://dx.doi.org/10.1111/j.1600-0420.2007.01057.x

Quaggin SE. Turning a blind eye to anti-VEGF toxicities. J Clin Invest 2012; 122: 3849-51. http://dx.doi.org/10.1172/JCI65509

Byeon SH, Lee SC, Choi SH, Lee HK, Lee JH, Chu YK. Kwon OW/ Vascular endothelial growth factor as an autocrine survival factor for retinal pigment epithelial cells under oxidative stress via the VEGF-R2/PI3K/Akt. Invest Ophthalmol Vis Sci 2010; 51: 1190-7. http://dx.doi.org/10.1167/iovs.09-4144

Ridwan S, Bauer H, Frauenknecht K, von Pein H, Sommer CJ. Distribution of granulocyte-monocyte colony-stimulating factor and its receptor ????-subunit in the adult human brain with specific reference to Alzheimer's disease. J Neural Transm 2012; 119: 1389-406. http://dx.doi.org/10.1007/s00702-012-0794-y

Adelman RA, Zheng Q, Mayer HR. Persistent ocular hypertension following intravitreal bevacizumab and ranibizumab injections. J Ocul Pharmacol Ther 2010; 26: 105-10. http://dx.doi.org/10.1089/jop.2009.0076

Krishnan R, Goverdhan S, Lochhead J. Submacular haemorrhage after intravitreal bevacizumab compared with intravitreal ranibizumab in large occult choroidal neovascularization. Clin Exper Ophthalmol 2009; 37: 384-8. http://dx.doi.org/10.1111/j.1442-9071.2009.02043.x

Schultz GS, Grant MB. Neovascular growth factors. Eye (Lond) 1991; 5: 170-80. http://dx.doi.org/10.1038/eye.1991.31

Amin R, Puklin JE, Frank RN. Growth factor localization in choroidal neovascular membranes of age-related macular degeneration. Invest Ophthalmol Vis Sci 1994; 35: 3178-88.

Frank RN, Amin RH, Eliott D, Puklin JE, Abrams GW. Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes. Am J Ophthalmol 1996; 122: 393-403.

Johnson LV, Leitner WP, Staples MK, Anderson DH. Complement activation and inflammatory processes in drusen formation and age related macular degeneration. Exp Eye Res 2001; 73: 887-96. http://dx.doi.org/10.1006/exer.2001.1094

Johnson LV, Leitner WP, Rivest AJ, Staples MK, Radeke MJ, Anderson DH. The Alzheimer's A beta -peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci USA 2002; 99: 11830-5. http://dx.doi.org/10.1073/pnas.192203399

Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308: 385-9. http://dx.doi.org/10.1126/science.1109557

Combadière C, Feumi C, Raoul W, Keller N, Rodéro M, Pézard A, et al. CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of agerelated macular degeneration. J Clin Invest 2007; 117: 2920- 8. http://dx.doi.org/10.1172/JCI31692

Lommatzsch A, Hermans P, Müller KD, Bornfeld N, Bird AC, Pauleikhoff D. Are low inflammatory reactions involved in exudative age-related macular degeneration? Morphological and immunhistochemical analysis of AMD associated with basal deposits. Graefes Arch Clin Exp Ophthalmol 2008; 246: 803-10. http://dx.doi.org/10.1007/s00417-007-0749-4

Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR, et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 2010; 29: 95-112. http://dx.doi.org/10.1016/j.preteyeres.2009.11.003

Tuo J, Grob S, Zhang K, Chan CC. Genetics of immunological and inflammatory components in age-related macular degeneration. Ocul Immunol Inflamm 2012; 20: 27- 36. http://dx.doi.org/10.3109/09273948.2011.628432

de Oliveira Dias JR, Rodrigues EB, Maia M, Magalhães O Jr, Penha FM, Farah ME. Cytokines in neovascular age-related macular degeneration: fundamentals of targeted combination therapy. Br J Ophthalmol 2011; 95: 1631-7. http://dx.doi.org/10.1136/bjo.2010.186361

Parmeggiani F, Romano MR, Costagliola C, Semeraro F, Incorvaia C, D'Angelo S, et al. Mechanism of inflammation in age-related macular degeneration. Mediators Inflamm 2012; 2012: 546786. http://dx.doi.org/10.1155/2012/546786

Buschini E, Piras A, Nuzzi R, Vercelli A. Age-related macular degeneration and drusen: neurinflammation in the retina. Prog Neurobiol 2011; 95: 14-25. http://dx.doi.org/10.1016/j.pneurobio.2011.05.011

Raoul W, Feumi C, Keller N, Lavalette S, Houssier M, Behar- Cohen F, et al. Lipid-bloated subretinal microglial cells are at the origin of drusen appearance in CX3CR1-deficient mice. Ophthalmic Res 2008; 40: 115-9. http://dx.doi.org/10.1159/000119860

Luibl V, Isas JM, Kayed R, Glabe CG, Langen R, Chen J. Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J Clin Invest 2006; 116: 378-85. http://dx.doi.org/10.1172/JCI25843

Liu RT, Gao J, Cao S, Sandhu N, Cui JZ, Chou CL, et al. Inflammatory mediators induced by amyloid-beta in the retina and RPE in vivo: Implications for inflammasome activation in age-related macular degeneration. Invest Ophthalmol Vis Sci 2013; 54: 2225-37. http://dx.doi.org/10.1167/iovs.12-10849

Yankner BA, Lu T. Amyloid beta-protein toxicity and the pathogenesis of Alzheimer disease. J Biol Chem 2009; 284: 4755-9. http://dx.doi.org/10.1074/jbc.R800018200

Yoshida T, Ohno-Matsui K, Ichinose S, Sato T, Iwata N, Saido TC, et al. The potential role of amyloid beta in the pathogenesis of age-related macular degeneration. J Clin Invest 2005; 115: 2793-800. http://dx.doi.org/10.1172/JCI24635

Rutar M, Natoli R, Provis JM. Small interfering RNAmediated suppression of Ccl2 in Müller cells attenuates microglial recruitment and photoreceptor death following retinal degeneration. J Neuroinflammation 2012; 9. http://dx.doi.org/10.1186/1742-2094-9-221

Giménez-Gallego G, Rodkey J, Bennett C, Rios-Candelore M, DiSalvo J, Thomas K. Brain-derived acidic fibroblast growth factor: complete amino acid sequence and homologies. Science 1985; 230: 1385-8. http://dx.doi.org/10.1126/science.4071057

Byrd VM, Ballard DW, Miller GG, Thomas JW. Fibroblast growth factor-1 (FGF-1) enhances IL-2 production and nuclear translocation of NF-kappaB in FGF receptor-bearing Jurkat T cells. J Immunol 1999; 162: 5853-9.

Meij JT, Sheikh F, Jimenez SK, Nickerson PW, Kardami E, Cattini PA. Exacerbation of myocardial injury in transgenic mice overexpressing FGF-2 is T cell dependent. Am J Physiol Heart Circ Physiol 2002; 282: H547-55.

Rossini M, Cheunsuchon B, Donnert E, Ma LJ, Thomas JW, Neilson EG, Fogo AB. Immunolocalization of fibroblast growth factor-1 (FGF-1), its receptor (FGFR-1), and fibroblast-specific protein-1 (FSP-1) in inflammatory renal disease. Kidney Int 2005; 68: 2621-8. http://dx.doi.org/10.1111/j.1523-1755.2005.00734.x

Zittermann SI, Issekutz AC. Basic fibroblast growth factor (bFGF, FGF-2) potentiates leukocyte recruitment to inflammation by enhancing endothelial adhesion molecule expression. Am J Pathol 2006; 168: 835-46. http://dx.doi.org/10.2353/ajpath.2006.050479

Andrés G, Leali D, Mitola S, Coltrini D, Camozzi M, Corsini M, et al. A pro-inflammatory signature mediates FGF2- induced angiogenesis. J Cell Mol Med 2009; 13: 2083-108. http://dx.doi.org/10.1111/j.1582-4934.2008.00415.x

Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature 2012; 481: 278-86. http://dx.doi.org/10.1038/nature10759

Lee M, Kang Y, Suk K, Schwab C, Yu S, McGeer PL. Acidic fibroblast growth factor (FGF) potentiates glial-mediated neurotoxicity by activating FGFR2 IIIb protein. J Biol Chem 2011; 286: 41230-45. http://dx.doi.org/10.1074/jbc.M111.270470

Araujo DM, Cotman CW. Basic FGF in astroglial, microglial, and neuronal cultures: characterization of binding sites and modulation of release by lymphokines and trophic factors. J Neurosci 1992; 12: 1668-78.

Liu X, Mashour GA, Webster HF, Kurtz A. Basic FGF and FGF receptor 1 are expressed in microglia during experimental autoimmune encephalomyelitis: temporally distinct expression of midkine and pleiotrophin. Glia 1998; 24: 390-7. http://dx.doi.org/10.1002/(SICI)1098- 1136(199812)24:4<390::AID-GLIA4>3.0.CO;2-1

Fernández IS, Cuevas P, Angulo J, López-Navajas P, Canales-Mayordomo A, González-Corrochano R, et al. Gentisic acid, a compound associated with plant defense and a metabolite of aspirin, heads a new class of in vivo fibroblast growth factor inhibitors. J Biol Chem 2010; 285: 11714-29. http://dx.doi.org/10.1074/jbc.M109.064618

Cuevas P, Angulo J, Giménez-Gallego G. Topical treatment of contact dermatitis by pine processionary caterpillar. BMJ Case Rep 2011; 2011. http://dx.doi.org/10.1136/bcr.06.2011.4351

Takagi S, Takahashi K, Katsura Y, Matsuoka T, Ohsaka A. Basic fibroblast growth factor modulates the surface expression of effector cell molecules and primes respiratory burst activity in human neutrophils. Acta Haematol 2000; 103: 78-83. http://dx.doi.org/10.1159/000041024

Ohsaka A, Takagi S, Takeda A, Katsura Y, Takahashi K, Matsuoka T. Basic fibroblast growth factor up-regulates the surface expression of complement receptors on human monocytes. Inflamm Res 2001; 50: 270-4. http://dx.doi.org/10.1007/s000110050753

Reed JR, Stone MD, Beadnell TC, Ryu Y, Griffin TJ, Schwertfeger KL. Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes macrophage recruitment in a CX3CL1-dependent manner. PLoS One 2012; 7: e45877. http://dx.doi.org/10.1371/journal.pone.0045877

Raoul W, Auvynet C, Camelo S, Guillonneau X, Feumi C, Combadière C, et al. CCL2/CCR2 and CX3CL1/CX3CR1 chemokine axes and their possible involvement in agerelated macular degeneration. J Neuroinflammation 2010; 7: 87. http://dx.doi.org/10.1186/1742-2094-7-87

Allain H, Ramelet AA, Polard E, Bentué-Ferrer D. Safety of calcium Dobesilate in chronic venous disease, diabetic retinopathy and haemorrhoids. Drug Saf 2004; 27: 649-60. http://dx.doi.org/10.2165/00002018-200427090-00003

Haritoglou C, Gerss J, Sauerland C, Kampik A, Ulbig MW, CALDIRET study group. Effect of calcium Dobesilate on occurrence of diabetic macular oedema (CALDIRET study): randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2009; 373: 1364-71. http://dx.doi.org/10.1016/S0140-6736(09)60218-X

Downloads

Published

2013-04-04

How to Cite

Cuevas, P., Outeiriño, L., Azanza, C., Angulo, J., & Giménez-Gallego, G. . (2013). Clinical Efficacy of Intravitreal Injection of Dobesilate for Reversing Choroidal Angiogenesis in Age-Related Macular Degeneration . Journal of Aging and Gerontology, 1(1), 1–8. https://doi.org/10.12974/2309-6128.2013.01.01.1

Issue

Section

Articles