
 Journal of Aging and Gerontology, 2014, 2, 1-4 1 

 

 E-ISSN: 2309-6128/14  © 2014 Savvy Science Publisher 

Expression of the TGF- 1/p53 Target SERPINE1 Gene in 

Alzheimer’s Dementia: Molecular Mechanisms and Therapeutic 
Opportunities  

Stacie M. Kutz1, Craig E. Higgins2 and Paul J. Higgins2,* 

1
Department of Biology, Sage College of Albany. Albany, NY 12208, USA 

2
Center for Cell Biology & Cancer Research, Albany Medical College, Albany, NY 12208, USA 

INTRODUCTION 

Cardiovascular, thrombotic and neurodegenerative 

diseases significantly increase with age. These 

disorders are likely the result of ageing-related 

pathophysiologic changes in the vascular, hemostatic 

and central nervous systems (CNS) reflecting the 

development of coagulation anomalies, advanced 

sclerotic changes and deficiencies in protein 

degradation and clearance. Accumulation of neuronal 

tangles and amyloid peptides (A ) is a major cause of 

age-onset dementia and a hallmark neuropathologic 

feature of Alzheimer's disease (AD) for which there is 

currently no effective treatment. The plasmin-

generating cascade, involving urokinase (uPA) and 

tissue-type (tPA) plasminogen activators, convert 

plasminogen to the broad-spectrum protease plasmin. 

Plasmin provides an A -clearing function in the brain 

degrading A  and catalyzing amyloid precursor protein 

(APP) - site APP proteolysis producing nontoxic 

peptides. Plasmin activation, in turn, is negatively 

regulated by the clade E, member 1, serine protease 

inhibitor PAI-1 (plasminogen activator inhibitor type-1; 

SERPINE1) resulting in A  accumulation. PAI-1 and its 

major physiological inducer transforming growth factor-

1 (TGF- 1), moreover, are both increased in animal 

models of Alzheimer's disease as well as implicated in 

the development of human neurodegenerative 

processes. Importantly, direct injection of the 

pathogenic A 40
 
peptide into the CA1 region of the 

hippocampus significantly up-regulated PAI-1 

expression in tPA
-/-

 and plasminogen-deficient mice but 

only weakly in wild-type animals. This suggests the 

existence of a mechanism that, once initiated, 

exacerbates disease progression. Targeting of PAI-1  
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function and/or expression may constitute a clinically-

relevant molecular approach to the therapy of age-

related neurodegenerative diseases associated with 

increased PAI-1 levels. 

THE PLASMINOGEN SYSTEM IN ALZHEIMER’S 
DISEASE 

Aggregated -amyloid peptides accumulate in 

plaque-like structures in specific areas of the brain in 

AD patients by proteolytic processing of the single-pass 

transmembrane APP [1]. These deposits initiate 

prolonged CNS inflammation, neuronal death, and 

eventual cognitive decline [2]. A  peptides are 

produced by aspartic protease (BACE)-induced -site 

cleavage of APP and subsequent proteolysis (via 

presenilin and nicastrin) at the C99 transmembrane-

localized  position [3–6]. The broad-spectrum 

protease plasmin degrades A  [7–9] and plasminogen 

plasmin activation decreases A  peptide levels [10]. 

While the mechanisms are complex, plasmin-mediated 

proteolysis of APP at the -site (either as a direct or 

indirect target; the latter as a consequence of plasmin 

activation of matrix metalloproteinases including TACE 

or ADAM 10) generating the non-toxic p3 peptide [3,6] 

resulting in decreased A  production. Collectively, 

these data suggest a protective role for the plasmin 

cascade in the CNS. Plasmin levels in the brains of AD 

patients are, in fact, considerably reduced [10] 

supporting a causal relationship between deficient 

activity of the plasmin-generating proteolytic system 

and accumulation of A  in the progression of AD.  

GENETIC APPROACHES IMPLICATE PAI-1 IN 
AMYLOID ACCUMULATION 

Several members of the SERPIN superfamily 

(SERPINF1, SERPINI1, SERPINE1 (PAI-1), 

SERPINE2, and SERPINA3) exhibit cell-type neuro-

trophic, neuroprotective, or neuropathophysiologic 

activities [11]. PAI-1 (SERPINE1), in particular, 
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appears to have multifunctional roles in the CNS where 

it maintains neuronal cellular structure and initiates 

signaling through mitogen-activated protein kinases 

[12]. Recent findings, moreover, suggest a more global 

impact on intracellular networks as PAI-1 also activates 

the Jak/Stat and Akt pathways by binding to the low-

density lipoprotein receptor-related protein-1 (LRP-1), a 

member of the low density lipoprotein (LDL) receptor 

gene family [Czekay, Archambeault and Higgins, 

unpublished data]. Whether these varied effects are 

dependent on the anti-proteolytic function of PAI-1 is 

not clear but significantly increased PAI-1 

immunoreactivity in the CNS of AD patients is 

associated with development of senile plaques and 

ghost tangle structures [13], consistent with the 

colocalization of plasminogen activators and PAI-1 in 

plaque structures [14] which are sites of sustained 

inflammation [15]. Tg2576 and TgCRN8 transgenic 

mice, that are genetically-engineered to express the 

brain-targeted Swedish and the double Swedish/V717F 

A  mutants, respectively, exhibit age-dependent A  

plaque development as well as cognitive deficiencies 

[16]. Importantly, tPA activity in these mice was 

specifically decreased significantly in the hippocampus 

and amygdala which correlated corelating with regional 

increases in PAI-1 expression [17]. Since direct A  

peptide injection increased PAI-1 expression and 

whereas A  hippocampal clearance required both tPA 

and plasminogen, a functional tPA-plasmin axis 

appears necessary for A  removal [17]. While PAI-1 

may be neuroprotective in specific settings (e.g., tPA-

triggered neuronal apoptosis) [18,19] and is a CNS 

injury-response gene [20], chronically elevated PAI-1 

levels nevertheless promote A  accumulation by 

inhibiting plasmin-dependent degradation. Genetic 

evidence clearly indicates that brain PAI-1 expression 

is increased in A  precursor protein presenilin 1 

(APP/PS1) transgenic mice as well as in AD patients 

[21] while PAI-1-deficiency in an APP/PS1 background 

reduces amyloid accumulation likely by increasing tPA 

and plasmin activities [22]. Indeed, a diet containing the 

phenolic anti-oxidant tert-butylhydroquione reduced 

brain A  load in APP/PS1 transgenics and inhibited 

PAI-1 expression [22].  The translational impact of this 

study is highlighted by the realization that TGF- 1-

induced PAI-1 gene expression is dependent on the 

generation of reactive oxygen species by p22(Phox)-

containing NADP(H) oxidases [23,24].  

THERAPEUTIC OPPORTUNITIES 

The development of pharmacologic approaches to 

inhibit the function of a key contributor (PAI-1) to 

disease progression has significant translational 

relevance. AD patients have elevated neuronal levels 

of tPA, uPA, PAI-1 and 2-antiplasmin where they 

associate with A  plaques; their offsetting activities may 

blunt plasmin generation and inhibit A  clearance [25]. 

Importantly, a small molecule inhibitor of PAI-1 activity 

(PAZ-417) partially blocks amyloid deposition in a 

mouse AD model. PAI-1 inhibition stimulates 

tPA/plasmin activity, decreasing CNS A  levels and 

reverses cognitive deficits [26] suggesting that such 

targeting may have clinical utility. In addition, histone 

deacetylase inhibitors (HDACi) are emerging as a 

promising therapy for neurodegenerative disease [27]. 

Sodium butyrate (NaB), a broad-spectrum HDACi, 

improved learning and memory in rats subjected to the 

standard Morris water maze challenge [28]. Butyrate 

localizes to the cerebral cortex in KCl-induced 

spreading cortical depression [29]. NaB (as well as 

TSA) are neuroprotective in the context of ischemic 

brain injury [30] and effectively reduced TGF- 1-

induced PAI-1 expression [19]. Brain TGF- 1 levels 

increase during the onset and progression of 

Parkinson’s disease, AD, and stroke [reviewed in 19]. 

Elevated TGF- 1 expression correlates with A  

angiopathy and transgenic mice that overexpress TGF-

 in astrocytes exhibit early onset A  deposition [31]. 

TGF- 1, moreover, induces astrocyte APP expression 

while A  production was enhanced by TGF- 1 

signaling [32]. The coordinate overexpression of PAI-1 

and increased A  generation in response to elevated 

TGF- 1 in AD patients may dispose to disease 

progression [33]. Collectively, these findings raise the 

possibility that targeting specific TGF- 1-inducible 

genes (e.g., PAI-1, APP) may have therapeutic benefit 

in the setting of AD. HDACi coupled with a small 

molecule central nervous system-accessible PAI-1 

functional inhibitor may have efficacy as an approach 

to reverse the ongoing accumulation of amyloid 

deposits even after disease development. 
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