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Abstract: Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. 
Recently, transglutaminase-catalyzed post-translational modifications of proteins have been shown to be involved in 

molecular mechanisms responsible for human diseases. Transglutaminase-catalyzed post-translational modifications of 
proteins have been hypothesized to be involved also in the pathogenetic mechanisms responsible for several human 
neurodegenerative diseases. Alzheimer’s disease and other neurodegenerative diseases, such as Parkinson’s disease, 

supranuclear palsy, Huntington’s disease, and other polyglutamine diseases, are characterized in part by aberrant 
cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This review focuses on the 
possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of Alzheimer’s 

disease and other neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase 
inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity. 
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BIOCHEMISTRY  

Transglutaminases (TGs, E.C. 2.3.2.13) are a family 

of Ca
++

-dependent enzymes (Table 1) catalyzing 

covalent post-translational modifications of proteins. 

Examples of TG-catalyzed reactions include: I) acyl 

transfer between the -carboxamide group of a 

protein/polypeptide glutaminyl residue and the -amino 

group of a protein/polypeptide lysyl residue; II) 

attachment of a polyamine to the -carboxamide of a 

glutaminyl residue; III) deamidation of the -

carboxamide group of a protein/polypeptide glutaminyl 

residue (Figure 1) [1, 2]. The reactions catalyzed by 

TGs occur by a two-step mechanism (Figure 2). The 

transamidating activity of TGs is activated by the 

binding of Ca
2+

, which exposes an active-site cysteine 

residue. This cysteine residue reacts with the -

carboxamide group of an incoming glutaminyl residue 

of a protein/peptide substrate to yield a thioacyl-

enzyme intermediate and ammonia (Figure 2, Step 1). 

The thioacyl-enzyme intermediate then reacts with a 

nucleophilic primary amine substrate, resulting in the 

covalent attachment of the amine-containing donor to 

the substrate glutaminyl acceptor and regeneration of 

the cysteinyl residue at the active site (Figure 2, Step 

2). If the primary amine is donated by the -amino 

group of a lysyl residue in a protein/polypeptide, a N -

( -L-glutamyl)-L-lysine (GGEL) isopeptide bond is 

formed (Figure 1, example I). On the other hand, if a  
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polyamine or another primary amine (e.g. histamine) 

acts as the amine donor, a -glutamylpolyamine (or -

glutamylamine) residue is formed (Figure 1, example 

II). It is also possible for a polyamine to act as an N,N-

bis-( -L-glutamyl)polyamine bridge between two 

glutaminyl acceptor residues either on the same 

protein/polypeptide or between two 

proteins/polypeptides [3]. If there is no primary amine 

present, water may act as the attacking nucleophile, 

resulting in the deamidation of glutaminyl residues to 

glutamyl residues (Figure 1, example III).
 

It is 

worthwhile noting that two of these reactions, in 

particular, the deamidation of peptides obtained from 

the digestion of the gliadin, a protein present in wheat, 

and the N -( -L-glutamyl)-L-lysine (GGEL) isopeptide 

formation between these peptides and “tissue” 

Transglutaminase (TG2 or tTG), have been shown to 

cause the formation of new antigenic epitopes which 

are responsible of immunological reactions during the 

Celiac Disease (CD), one of the most common human 

autoimmune diseases [4, 5]. The reactions catalyzed 

by TGs occur with little change in free energy and 

hence should theoretically be reversible. However, 

under physiological conditions the cross linking 

reactions catalyzed by TGs are usually irreversible. 

This irreversibility partly results from the metabolic 

removal of ammonia from the system and from 

thermodynamic considerations resulting from altered 

protein conformation. Some scientific reports suggest 

that TGs may be able to catalyze the hydrolysis of N -

( -L-glutamyl)-L-lysine cross-links (GGEL) isopeptide 

bonds in some soluble cross-linked proteins. 

Furthermore, it is likely that TGs can catalyze the 
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Table 1: TG Enzymes and their Biological Functions when Known 

TG  Physiological role Gene map location Reference 

Factor XIIIa  Blood clotting 6p24-25 [59] 

TG 1(Keratinocyte TG, kTG)  Skin differentiation  14q11.2 [60] 

TG 2(Tissue TG, tTG, cTG)  Apoptosis, cell adhesion, signal transduction 20q11-12  [61] 

TG 3 (Epidermal TG, eTG) Hair follicle differentiation 20p11.2 [62] 

TG 4 (Prostate TG, pTG) Suppression of sperm immunogenicity 3q21-2 [63] 

TG 5 (TG X)  Epidermal differentiation 15q15.2 [64] 

TG 6 (TG Y) Nervous System development 20p13 [64] 

TG 7 (TG Z) Unknown function 15q15.2 [64] 
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Figure 1: Transglutaminase-catalyzed reactions. Examples of TG-catalyzed reactions: I) acyl transfer between the -
carboxamide group of a protein/polypeptide glutaminyl residue and the -amino group of a protein/polypeptide lysyl residue; II) 
attachment of a polyamine to the -carboxamide group of a glutaminyl residue; III) deamidation of the -carboxamide group of a 
protein/polypeptide glutaminyl residue.  

exchange of polyamines onto proteins [2]. In some TGs 

other catalytic activities, such as the ability to hydrolyze 

GTP (or ATP) into GDP (or ADP) and inorganic 

phosphate, a protein disulfide isomerase activity, a 

serine/threonine kinase activity and an esterification 

activity, are often present [6-9]. In fact, experimental 

evidences indicate that some TGs are multifunctional 

proteins with distinct and regulated enzymatic activities. 

For example, under physiological conditions, the 

transamidation activity of TGs is latent [10], while other 

activities, recently identified, could be present. 

Morever, in some pathophysiological states, when the 

concentration of Ca
2+ 

increases, the crosslinking 

activity of TGs may contribute to important biological 

processes. As previously described, one of the most 

intriguing properties of some TGs, such as TG2, is the 

ability to bind and hydrolyze GTP and furthermore, to 

bind to GTP and Ca
2+

. GTP and Ca
2+ 

regulate its 

enzymatic activities, including protein cross-linking, in a 

reciprocal manner: the binding of Ca
2+

 inhibits GTP-

binding and GTP-binding inhibits the transglutaminase 

cross-linking activity of the TG2 [6]. Interestingly, TG2 

shows no sequence homology with heterotrimeric or 

low-molecular-weight G-proteins, but there is evidence 

that TG2 (TG2/Gh ) is involved in signal transduction, 

and, therefore, TG2/Gh  should also be classified as a 

large molecular weight G-protein. Other studies, along 

with ours, showed that TG2/Gh  can mediate the 

activation of phospholipase C (PLC) by the 1b-

adrenergic receptor [11] and can modulate adenylyl 

cyclase activity [12]. TG2/Gh  can also mediate the 

activation of the 1 isoform of PLC and of maxi-K 
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channels [13]. Interestingly, the signaling function of 

TG2/Gh  is preserved even with the mutagenic 

inactivation of its crosslinking activity by the mutation of 

the active site cysteine residue [14]. Evidence of a 

pathophysiological role of the TGs in cell signaling and 

in disulfide isomerase activity is lacking to date. 

MOLECULAR BIOLOGY  

At least eight different TGs, distributed in the human 

body, have been identified (Table 1). Complex 

mechanisms regulating the gene expression of TGs, 

both at transcriptional and translational levels, 

determine a complex but precise distribution of these 

enzymes in a cell and/or a tissue [15]. Such complex 

gene expression reflects the physiological roles that 

these enzymes play in both the intracellular and 

extracellular compartments. In the Nervous System, for 

example, several forms of TGs are simultaneously 

expressed [16-18]. Moreover, several alternative splice 

variants of TGs, mostly in the 3’-end region, have been 

identified. For example, Figure 3 shows some splice 

variants of TG2, up to now described in the literature. 

Interestingly, some of them are differently expressed in 

human pathologies, such as Alzheimer’s disease (AD) 

[22] and cancer [23]. On the basis of their ubiquitous 

expression and their biological roles, we may speculate 

that the absence of these enzymes would be lethal. 

However, this does not always seem to be the case, 

since, for example, null mutants of the TG2 are usually 

phenotypically normal at birth [24]. This result may be 

explained by the multiple expressions of other TG 

genes that could be substituting the missing isoform.  

Bioinformatic studies have shown that the primary 

structures of human TGs share some identities in only 

few regions, such as the active site and the calcium 

binding regions. However, high sequence conservation 

 

Figure 2: Schematic representation of a two step transglutaminase reaction. Step 1: In the presence of Ca
2+

, the active-site 
cysteine residue reacts with the -carboxamide group of an incoming glutaminyl residue of a protein/peptide substrate to yield a 
thioacyl-enzyme intermediate and ammonia. Step 2: The thioacyl-enzyme intermediate reacts with a nucleophilic primary amine 
substrate, resulting in the covalent attachment of the amine-containing donor to the substrate glutaminyl acceptor and 
regeneration of the cysteinyl residue at the active site. If the primary amine is donated by the -amino group of a lysyl residue in 
a protein/polypeptide, a N -( -L-glutamyl)-L-lysine (GGEL) isopeptide bond is formed. 
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and, therefore, a high degree of preservation of residue 

secondary structure among TG2, TG3 and FXIIIa 

indicate that these TGs all share four-domain tertiary 

structures which could be similar to those of other TGs 

[25]. 

TRANSGLUTAMINASES AND NEURODEGENERA-
TIVE DISEASES 

A large number of scientific reports suggests that 

TG activity is involved in the molecular mechanisms 

responsible for the pathogenesis of neurodegenerative 

diseases, but, to date, definitive experimental findings 

regarding the role of these enzymes in the 

development of these human diseases have not yet 

been obtained. Protein aggregates in affected brain 

regions are histopathological hallmarks of Alzheimer’s 

disease and many other neurodegenerative diseases 

[26]. More than 20 years ago Selkoe et al. [27] 

suggested that TG activity might contribute to the 

formation of protein aggregates in AD brain. In support 

of this hypothesis, tau protein has been shown to be an 

excellent in vitro substrate of TGs [28-31]
 
and GGEL 

cross-links have been found in the neurofibrillary 

tangles and paired helical filaments of AD brains [32, 

33]. In addition to these experimental findings, it has 

been shown that TGs and transglutaminase-catalyzed 

cross-links co-localize with pathological lesions in 

Alzheimer’s disease brain [33-35]. Interestingly, a 

recent work showed the presence of bis -glutamyl 

putrescine in human CSF, which was increased in 

Huntington’s disease (HD) CSF [36]. These are 

important experimental data which demonstrate that 

protein/peptides cross-links and protein/peptides cross-

linking by polyamines do indeed occur in brain, and 

that these transglutaminase-catalyzed reaction 

products are increased in AD and HD brains. More 

recently, TG activity has been shown to induce amyloid 

-protein oligomerization and aggregation at 

physiologic levels in vitro [37, 38]. By these molecular 

mechanisms, TGs could contribute to AD symptoms 

and progression [38]. Moreover, there is evidence that 

TGs also contribute to the formation of proteinaceous 

deposits in Parkinson’s disease (PD) [39, 40] and in 

supranuclear palsy [41, 42]. To support the role of the 

TG activity in the pathogenesis of neurodegenerative 

diseases, expanded polyglutamine domains, present in 

HD and other neurodegenerative diseases caused by a 

CAG expansion in the affected gene (Table 2) [43], 

have been reported to be substrates of TG2 in vitro 

[44-46]. Therefore, aberrant TG activity could 

contribute to the pathogenesis of neurodegenerative 

diseases, including Alzheimer’s disease and other 

neurodegenerative diseases, by different molecular 

mechanisms, as described in Figure 4. However, 

although all these studies suggest the possible 

involvement of the TGs in the formation of deposits of 

protein aggregates in neurodegenerative diseases, 

they do not indicate whether aberrant TG activity per se 

directly determines the disease’s progression. In 

support of the hypothesis of a pathophysiological role 

for protein aggregates in neurodegenerative diseases, 
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Figure 3: Schematic diagram of TG2 and its different isoforms. Gray boxes represent TG2 protein sequences, and shaded 
boxes represent alternate aminoacid sequences due to changes in reading frames (see Ref. 19-22). 
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it is worth noting that the aggregate formation has been 

shown to inhibit the proteasome degradation of 

expanded polyglutamine proteins [47].  

TRANSGLUTAMINASES AS POTENTIAL THERA-
PEUTIC TARGETS IN NEURODEGENERATIVE 
DISEASES 

In light of a lack of long-term effective treatments for 

human neurodegenerative diseases, the possibility that 

selective TG inhibitors may be of clinical benefit has 

been seriously considered. In this respect, some 

encouraging results have been obtained with TG 

inhibitors in preliminary studies with different biological 

models of CAG-expansion diseases. For example, 

cystamine (Figure 5) is a potent in vitro inhibitor of 

enzymes that require an unmodified cysteine at the 

active site [48]. Inasmuch as TGs contain a crucial 

active-site cysteine, cystamine has the potential to 

inhibit these enzymes by disulfide interchange 

reactions. Recent studies have shown that cystamine 

decreases the number of protein inclusions in 

transfected cells expressing the atrophin protein 

containing a pathological-length polyglutamine domain, 

responsible for the Dentato-Rubro-Pallido-Luysian 

Atrophy (DRPLA) [49]. In other studies, cystamine 

administration to HD-transgenic mice resulted in an 

increase in life expectancy and amelioration of 

neurological symptoms [50, 51]. Neuronal inclusions 

were decreased in one of these studies [51]. Although 

all these scientific reports seem to support the 

hypothesis of a direct role of TG activity in the 

pathogenesis of the polyglutamine diseases, cystamine 

is also found to act in the HD-transgenic mice by 

mechanisms other than the inhibition of TGs, such as 

the inhibition of Caspases [52], suggesting that this 

compound can have an additive effect in the therapy of 

Table 2: List of Polyglutamine (CAG-Expansion) Diseases 

CAG triplet number Disease  Sites of Neuropathology 

Normal Disease 

Gene product (Intracellular 
localization of protein deposits) 

Reference 

Corea Major or Huntington’s 
Disease (HD) 

Striatum  

(medium spiny neurons) and 
cortex in late stage 

6-35 36-121 Huntingtin 

(n, c) 

[65] 

Spinocerebellar Ataxia Type 
1 (SCA1) 

Cerebellar cortex (Purkinje 

cells), dentate nucleus and 
brain stem 

6-39 40-81 Ataxin-1 

(n, c) 

 

[66] 

Spinocerebellar Ataxia Type 
2 (SCA2) 

Cerebellum, pontine nuclei, 
substantia nigra 

15-29 35-64 Ataxin –2 

(c) 

[67] 

Spinocerebellar Ataxia Type 

3 (SCA3) or Machado-
Joseph disease (MJD) 

Substantia nigra, globus 

pallidus, pontine nucleus, 
cerebellar cortex 

13-42 61-84 

 

Ataxin-3 

(c) 

 

[68] 

Spinocerebellar Ataxia Type 
6 (SCA6) 

Cerebellar and mild 
brainstem atrophy 

4-18 

 

21-30 

 

Calcium channel 

Subunit ( 1A) 

(m) 

[69] 

Spinocerebellar Ataxia Type 
7 (SCA7) 

Photoreceptor and bipolar 

cells, cerebellar cortex, 
brainstem 

7-17 37-130 Ataxin-7 

(n) 

[70] 

Spinocerebellar Ataxia Type 
12 (SCA12) 

Cortical, cerebellar atrophy 7-32 41-78 Brain specific regulatory subunit of 
protein phosphatase PP2A 

(?) 

 

[71] 

Spinocerebellar Ataxia Type 
17 (SCA17) 

Gliosis and neuronal loss in 
the Purkinje cell layer 

29-42 46-63 TATA-binding protein (TBP) 

(n) 

[72] 

Spinobulbar Muscular 
Atrophy (SBMA) or 
Kennedy Disease 

Motor neurons (anterior horn 
cells, bulbar neurons) and  

dorsal root ganglia 

11-34 

 

40-62 

 

Androgen receptor 

(n, c) 

[73] 

Dentatorubral-pallidoluysian 
Atrophy (DRPLA) 

Globus pallidus, dentato-

rubral and subthalamic 
nucleus 

7-35 49-88 Atrophin 

(n, c) 

[74] 

Cellular localization: c, cytosolic; m, transmembrane; n, nuclear. 
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Figure 4: Possible mechanisms responsible for protein aggregate formation catalyzed by TGs. 

HD. Currently, cystamine is already in phase II studies 

in humans, but several side effects, such as nausea, 

motor impairment and dosing schedule have been 

reported as reasons for non-adherence during these 

studies in humans [53, 54]. The pharmacodynamics 

and the pharmacokinetics of cystamine, therefore, 

should be carefully investigated in order to confirm the 

same effectiveness in patients with neurodegenerative 

diseases. Another critical problem in the use of TG 

inhibitors in treating neurological diseases relates to 

the fact that, as previously reported, the human brain 

contains at least four TGs, including TG1, 2, 3 [17] and 

TG6 [55], and a strong non-selective inhibitor of TGs 

might also inhibit plasma Factor XIIIa, causing a 

bleeding disorder. Therefore, from a number of 

standpoints it would seem that a selective inhibitor, 

which discriminates between TGs, would be preferable 

to an indiscriminate TG inhibitor. In fact, although most 

of the TG activity in mouse brain, at least as assessed 

by an assay that measures the incorporation of 

radioactive putrescine (amine donor) into N,N-dimethyl 

casein (amine acceptor), seems to be due to TG2 [56], 

no conclusive data has been obtained by TG2 gene 

knock-out experiments about the involvement of this 

TG in the development of the symptoms in HD-

transgenic mice [57]. However, a recent scientific 

report showed that cystamine reduces aggregate 

formation in a mouse model of oculopharyngeal 

muscular dystrophy (OMPD), in which also the TG2 

knockdown is capable to suppress the aggregation and 

the toxicity of the mutant protein PABPN1 [58], 

NH2

S

S

H2N

 

Figure 5: Chemical structure of cystamine. 
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suggesting this compound as a possible therapeutic for 

OMPD.  

CONCLUSIONS 

Although many scientific reports have implicated 

aberrant TG activity in neurodegenerative diseases, 

still today we are looking for data which could definitely 

confirm the direct involvement of TGs in the 

pathogenetic mechanisms responsible for these 

diseases. The use of inhibitors of TGs could be then 

useful for experimental approaches. To minimize the 

possible side effects, however, selective inhibitors of 

the TGs should be required in the future. Progress in 

this area of research may be achieved also through 

pharmaco-genetic techniques. 
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