Virtual Reality and 3D Simulation in the Treatment of Pediatric Patients with Central Nervous System Tumors
DOI:
https://doi.org/10.12974/2311-8687.2023.11.14Keywords:
Pediatric brain tumors, Neurosurgical oncology, Virtual reality, 3D simulation, Pediatric neurosurgery researchAbstract
Pediatric central nervous system tumors are the primary solid malignancies in children and remain a leading cause of mortality in infancy. Advances in pediatric neuro-oncology, driven by molecular oncology research, emphasize the critical need for high-quality pathological tissue to support advanced molecular investigations. However, the vast heterogeneity of these tumors requires precise discrimination of collection sites, aligning with preoperative imaging data. Surgical resection, a pivotal step in diagnosis and treatment, could result in potential morbidities influencing children's neurological status. This, in turn, affects the feasibility of subsequent oncological treatments, influencing overall prognosis and quality of life. To address these challenges, technological tools enhance neurosurgeon orientation in pre-surgical planning and resection. While stereotactic navigation systems reduce morbidity, limitations persist in providing only two-dimensional anatomical information. Recent developments in 3D surgical simulation and virtual reality revolutionize procedural planning, offering real-time integration with intraoperative navigation systems. Beyond surgery, virtual reality has potential in case discussions, preoperative planning, and operative guidance, aiming to improve care and patient outcomes. The virtual reality experience, coupled with detailed anatomical visualization, facilitates meticulous surgical strategy planning for minimal invasiveness. Despite expanding literature on virtual reality applications in neurosurgery, pediatric neurosurgical oncology experiences remain limited. Scientific evaluation of simulation systems' impact on techniques and outcomes, combined with advances in neuroimaging, offers promise for adapting surgical approaches based on neoplastic brain lesion behavior.
In conclusion, incorporating 3D surgical simulation and virtual reality technologies in pediatric neurosurgical oncology holds substantial benefits, offering improved procedural planning, enhanced precision, and patient-specific adaptation. Despite limited reported experiences, the compelling advantages underscore the need for further exploration and consideration in the evolving landscape of pediatric neuro-oncology.
References
Pollack IF, Agnihotri S, Broniscer A. Childhood brain tumors: current management, biological insights, and future directions: JNSPG 75th Anniversary Invited Review Article. Journal of Neurosurgery: Pediatrics 2019; 23: 261-273. https://doi.org/10.3171/2018.10.PEDS18377 DOI: https://doi.org/10.3171/2018.10.PEDS18377
Mochizuki AY, Frost IM, Mastrodimos MB, Plant AS, Wang AC, Moore TB, Prins RM, Weiss PS, Jonas SJ. Precision Medicine in Pediatric Neurooncology: A Review. ACS Chem Neurosci 2018; 9: 11-28. https://doi.org/10.1021/acschemneuro.7b00388 DOI: https://doi.org/10.1021/acschemneuro.7b00388
Gajjar A, Bowers DC, Karajannis MA, Leary S, Witt H, Gottardo NG. Pediatric Brain Tumors: Innovative Genomic Information Is Transforming the Diagnostic and Clinical Landscape. J Clin Oncol 2015; 20; 33(27): 2986-98. https://doi.org/10.1200/JCO.2014.59.9217 DOI: https://doi.org/10.1200/JCO.2014.59.9217
Del Baldo G, Carai A, Abbas R, Cacchione A, Vinci M, Di Ruscio V, et al. Targeted therapy for pediatric diffuse intrinsic pontine glioma: a single-center experience. Ther Adv Med Oncol 2022; 6: 14: 17588359221113693. https://doi.org/10.1177/17588359221113693 DOI: https://doi.org/10.1177/17588359221113693
Fu AY, Kavia J, Yadava Y, Srinivasan A, Hargwood P, Mazzola CA, Ammar A. Biopsy of diffuse midline glioma is safe and impacts targeted therapy: a systematic review and meta-analysis. Childs Nerv Syst. 2023. https://doi.org/10.1007/s00381-023-06208-4 DOI: https://doi.org/10.1007/s00381-023-06208-4
Di Bonaventura R, Montano N, Giordano M, Gessi M, Gaudino S, Izzo A, et al. Reassessing the Role of Brain Tumor Biopsy in the Era of Advanced Surgical, Molecular, and Imaging Techniques-A Single-Center Experience with Long-Term Follow-Up. J Pers Med 2021; 11(9): 909. https://doi.org/10.3390/jpm11090909 DOI: https://doi.org/10.3390/jpm11090909
Puget S, Beccaria K, Blauwblomme T, et al. Biopsy in a series of 130 pediatric diffuse intrinsic Pontine gliomas. Childs Nerv Syst. 2015; 31(10): 1773-80. https://doi.org/10.1007/s00381-015-2832-1 DOI: https://doi.org/10.1007/s00381-015-2832-1
Dawes W, Marcus HJ, Tisdall M, Aquilina K. Robot-assisted stereotactic brainstem biopsy in children: prospective cohort study. J Robot Surg 2019; 13(4): 575-579. https://doi.org/10.1007/s11701-018-0899-x DOI: https://doi.org/10.1007/s11701-018-0899-x
Kuo BJ, Vissoci JRN, Egger JR, Smith ER, Grant GA, Haglund MM, Rice HE. Perioperative outcomes for pediatric neurosurgical procedures: analysis of the National Surgical Quality Improvement Program-Pediatrics. J Neurosurg Pediatr 2017; 19(3): 361-371. https://doi.org/10.3171/2016.10.PEDS16414 DOI: https://doi.org/10.3171/2016.10.PEDS16414
Abdelwahab MG, Cavalcanti DD, Preul MC. Role of computer technology in neurosurgery. Minerva Chir 2010; 65(4): 409-28
Zawy Alsofy S, Nakamura M, Suleiman A, Sakellaropoulou I, Welzel Saravia H, Shalamberidze D, et al. Cerebral Anatomy Detection and Surgical Planning in Patients with Anterior Skull Base Meningiomas Using a Virtual Reality Technique. J Clin Med 2021; 10(4): 681. https://doi.org/10.3390/jcm10040681 DOI: https://doi.org/10.3390/jcm10040681
AlZhrani G, Alotaibi F, Azarnoush H, Winkler-Schwartz A, Sabbagh A, Bajunaid K, et al. Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator NeuroTouch. J Surg Educ 2015; 72(4): 685-96. https://doi.org/10.1016/j.jsurg.2014.12.014 DOI: https://doi.org/10.1016/j.jsurg.2014.12.014
Mishra R, Narayanan MDK, Umana GE, Montemurro N, Chaurasia B, Deora H. Virtual Reality in Neurosurgery: Beyond Neurosurgical Planning. Int J Environ Res Public Health 2022; 19(3): 1719. https://doi.org/10.3390/ijerph19031719 DOI: https://doi.org/10.3390/ijerph19031719
Tangsrivimol JA, Schonfeld E, Zhang M, Veeravagu A, Smith TR, Härtl R, et al. Artificial Intelligence in Neurosurgery: A State-of-the-Art Review from Past to Future. Diagnostics. 2023; 20; 13(14): 2429. https://doi.org/10.3390/diagnostics13142429 DOI: https://doi.org/10.3390/diagnostics13142429
Lan L, Mao RQ, Qiu RY, Kay J, de Sa D. Immersive Virtual Reality for Patient-Specific Preoperative Planning: A Systematic Review. Surg Innov. 2022. 15533506221143236. https://doi.org/10.1177/15533506221143235 DOI: https://doi.org/10.1177/15533506221143235
Durrani S, Onyedimma C, Jarrah R, Bhatti A, Nathani KR, Bhandarkar AR, et al. The Virtual Vision of Neurosurgery: How Augmented Reality and Virtual Reality are Transforming the Neurosurgical Operating Room. World Neurosurg. 2022; 168: 190-201. https://doi.org/10.1016/j.wneu.2022.10.002 DOI: https://doi.org/10.1016/j.wneu.2022.10.002
Bernardo A. Virtual Reality and Simulation in Neurosurgical Training. World Neurosurg. 2017; 106: 1015-29. https://doi.org/10.1016/j.wneu.2017.06.140 DOI: https://doi.org/10.1016/j.wneu.2017.06.140
Keenan ID, Powell M. Interdimensional Travel: Visualisation of 3D-2D Transitions in Anatomy Learning. Adv Exp Med Biol. 2020; 1235: 103-116. https://doi.org/10.1007/978-3-030-37639-0_6 DOI: https://doi.org/10.1007/978-3-030-37639-0_6
Meyer-Szary J, Luis MS, Mikulski S, Patel A, Schulz F, Tretiakow D, et al. The Role of 3D Printing in Planning Complex Medical Procedures and Training of Medical Professionals-Cross-Sectional Multispecialty Review. Int J Environ Res Public Health. 2022. 11; 19(6): 3331. https://doi.org/10.3390/ijerph19063331 DOI: https://doi.org/10.3390/ijerph19063331
Boaro A, Moscolo F, Feletti A, Polizzi GMV, Nunes S, Siddi F, et al. Visualization, navigation, augmentation. The ever-changing perspective of the neurosurgeon. Brain Spine 2022; 17(2): 100926. https://doi.org/10.1016/j.bas.2022.100926 DOI: https://doi.org/10.1016/j.bas.2022.100926
Kockro RA, Stadie A, Schwandt E, Reisch R, Charalampaki C, Ng I, et al. A collaborative virtual reality environment for neurosurgical planning and training. Neurosurgery. 2007. 61, ONSE379-ONSE391. https://doi.org/10.1227/01.neu.0000303997.12645.26 DOI: https://doi.org/10.1227/01.neu.0000303997.12645.26
Zawy Alsofy S, Sakellaropoulou I, Stroop R. Evaluation of Surgical Approaches for Tumor Resection in the Deep Infratentorial Region and Impact of Virtual Reality Technique for the Surgical Planning and Strategy. J Craniofac Surg 2020; 31(7): 1865-9. https://doi.org/10.1097/SCS.0000000000006525 DOI: https://doi.org/10.1097/SCS.0000000000006525
Pivazyan G, Dowlati E, Phan TN, Davidson L, Oluigbo C, Mai JC, et al. Facilitation of Pediatric Posterior Fossa Vascular Malformation Resection Using Virtual Reality Platform: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2022; 22(6): p e269. https://doi.org/10.1227/ons.0000000000000147 DOI: https://doi.org/10.1227/ons.0000000000000147
Zebian B, Vergani F, Lavrador JP, Mukherjee S, Kitchen WJ, Stagno V, et al. Recent technological advances in pediatric brain tumor surgery. CNS Oncol 2017; 6(1): 71-82. https://doi.org/10.2217/cns-2016-0022 DOI: https://doi.org/10.2217/cns-2016-0022
Valls-Esteve A, Adell-Gómez N, Pasten A, Barber I, Munuera J, Krauel L. Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery. Children (Basel) 2023; 3; 10(5): 832. https://doi.org/10.3390/children10050832 DOI: https://doi.org/10.3390/children10050832
Iop A, El-Hajj VG, Gharios M, de Giorgio A, Monetti FM, Edström E et al. Extended Reality in Neurosurgical Education: A Systematic Review. Sensors 2022; 22(16): 6067. https://doi.org/10.3390/s22166067 DOI: https://doi.org/10.3390/s22166067
Mabray MC, Barajas RF, Cha S. Modern Brain Tumor Imaging. Brain Tumor Res Treat 2015; 3(1): 8-23. https://doi.org/10.14791/btrt.2015.3.1.8 DOI: https://doi.org/10.14791/btrt.2015.3.1.8
Tomlinson SB, Hendricks BK, Cohen-Gadol A. Immersive Three-Dimensional Modeling and Virtual Reality for Enhanced. Visualization of Operative Neurosurgical Anatomy. World Neurosurg 2019; 131: 313-320. https://doi.org/10.1016/j.wneu.2019.06.081 DOI: https://doi.org/10.1016/j.wneu.2019.06.081
Mascitelli JR, Schlachter L, Chartrain AG, Oemke HBA, Gilligan J, Costa AB, Shrivastava RK et al. Navigation-Linked Heads-Up Display in Intracranial Surgery: Early Experience. Oper Neurosurg (Hagerstown). 2018; 15(2): 184-193. https://doi.org/10.1093/ons/opx205 DOI: https://doi.org/10.1093/ons/opx205
Porter AB, Wen PY, Polley MC. Molecular Profiling in Neuro-Oncology: Where We Are, Where We're Heading, and How We Ensure Everyone Can Come Along. Am Soc Clin Oncol Educ Book. 2023; 43: e389322. https://doi.org/10.1200/EDBK_389322 DOI: https://doi.org/10.1200/EDBK_389322
Tagaytayan R, Kelemen A, Sik-Lanyi C. Augmented reality in neurosurgery. Arch Med Sci. 2018; 14(3): 572-578.
https://doi.org/10.5114/aoms.2016.58690 DOI: https://doi.org/10.5114/aoms.2016.58690
Plant-Fox AS, O'Halloran K, Goldman S. Pediatric brain tumors: the era of molecular diagnostics, targeted and immune-based therapeutics, and a focus on long term neurologic sequelae. Curr Probl Cancer. 2021; 45(4): 100777. https://doi.org/10.1016/j.currproblcancer.2021.100777 DOI: https://doi.org/10.1016/j.currproblcancer.2021.100777
Dho Y-S, Lee D, Ha T, Ji SY, Kim KM, Kang H, et al. Clinical application of patient-specific 3D printing brain tumor model production system for neurosurgery. Sci Rep. 2021; 26; 11(1): 7005. https://doi.org/10.1038/s41598-021-86546-y DOI: https://doi.org/10.1038/s41598-021-86546-y
Premuselli R, D'Amore C, Barba M, Marasi A, Del Baldo G, DE Benedictis, et al. Operator perceived advantage of virtual surgical rehearsal in pediatric neurosurgical oncology: a preliminary experience. J Neurosurg Sci 2023. https://doi.org/10.23736/S0390-5616.23.06152-0 DOI: https://doi.org/10.23736/S0390-5616.23.06152-0