Cardiometabolic and Cardiovascular Complications of Obesity in Children
DOI:
https://doi.org/10.12974/2311-8687.2020.08.8Keywords:
Obesity, Children, Adolescents, Cardiometabolic complications, Cardiovascular complications.Abstract
The rise in obesity in both children and adults has made obesity one of the biggest public health problems of this century. Obesity along with other factors such as hypertension, insulin resistance, dyslipidemia and diabetes mellitus are risk factors for the development of cardiovascular diseases. Overweight and/or obesity during childhood and its maintenance until adult life has been associated with early stages of cardiovascular disease. For this reason, the aim of this study is to revise the state of the art of cardiometabolic and cardiovascular complications related with overweight and/or obesity in children and adolescents. The first consequence of weight gain is an increase in adipose tissue, with different distribution depending on the sex. The excess of fat mass entails dysfunction of adipose tissue with an altered secretion of adipokines and instauration of a proinflammatory environment, which may derive in metabolic syndrome condition. The increase of adipose tissue along with an increase in sympathetic nervous system, triggers an increased left ventricular mass and with a reduced diastolic function.
Therefore, obesity should be prevented from the early stages of life, in order to avoid obesity itself and the metabolic disturbances that could undermine quality of life further on.
References
Kim S, Després J, Koh K. Obesity and Cardiovascular Disease: Friend or Foe? Eur Heart J. 2016; 37(48): 3560- 3568. https://doi.org/10.1093/eurheartj/ehv509 DOI: https://doi.org/10.1093/eurheartj/ehv509
Ayala-Marín A, Iguacel I, Miguel-Etayo P, Moreno L. Consideration of Social Disadvantages for Understanding and Preventing Obesity in Children. Front Public Health. 2020; 8: 423 https://doi.org/10.3389/fpubh.2020.00423 DOI: https://doi.org/10.3389/fpubh.2020.00423
Withrow D, Alter D. The economic burden of obesity worldwide: a systematic review of the direct costs of obesity. Obesity Rev. 2011; 12(2): 131-41. https://doi.org/10.1111/j.1467-789X.2009.00712.x DOI: https://doi.org/10.1111/j.1467-789X.2009.00712.x
Kim D, Basu A. Estimating the Medical Care Costs of Obesity in the United States: Systematic Review, Meta-Analysis, and Empirical Analysis. Value Health. 2016; 19(5): 602-13. https://doi.org/10.1016/j.jval.2016.02.008 DOI: https://doi.org/10.1016/j.jval.2016.02.008
Organization WH. Obesity and Overweight 2020
[Available from: https: //www.who.int/news-room/factsheets/ detail/obesity-and-overweight.
Finkelstein EA, Trogdon JP. Public health interventions for addressing childhood overweight. analysis of the business cases. Am J Public Health. 2008; 98(3): 411-5. https://doi.org/10.2105/AJPH.2007.114991 DOI: https://doi.org/10.2105/AJPH.2007.114991
Franks P, Hanson R, Knowler W, Sievers M, Bennett P, Looker H. Childhood Obesity, Other Cardiovascular Risk Factors, and Premature Death. N Engl J Med. 2010; 362(6): 485-93. https://doi.org/10.1056/NEJMoa0904130 DOI: https://doi.org/10.1056/NEJMoa0904130
Knop C, Singer V, Uysal Y, Schaefer A, Wolters B, Reinehr T. Extremely obese children respond better than extremely obese adolescents to lifestyle interventions. Pediatr Obes. 2015; 10(1): 7-14. https://doi.org/10.1111/j.2047-6310.2013.00212.x DOI: https://doi.org/10.1111/j.2047-6310.2013.00212.x
Learmonth Y, Hebert J, Fairchild T, Møller N, Klakk H, Wedderkopp N. Physical education and leisure-time sport reduce overweight and obesity: a number needed to treat analysis. Int J Obes (Lond). 2019; 43(10): 2076-2084. https://doi.org/10.1038/s41366-018-0300-1 DOI: https://doi.org/10.1038/s41366-018-0300-1
Kelley G, Kelley K. Effects of exercise in the treatment of overweight and obese children and adolescents: a systematic review of meta-analyses. J Obes. 2013; 2013: 783103. https://doi.org/10.1155/2013/783103 DOI: https://doi.org/10.1155/2013/783103
Santaliestra-Pasías A, Mouratidou T, Verbestel V, Huybrechts I, Gottrand F, Le Donne C, et al. Food consumption and screen-based sedentary behaviors in European adolescents: the HELENA study. Arch Pediatr Adolesc Med. 2012; 166(11): 110-20. https://doi.org/10.1001/archpediatrics.2012.646 DOI: https://doi.org/10.1001/archpediatrics.2012.646
Miguel-Berges M, Santaliestra-Pasias A, Mouratidou T, Androutsos O, de Craemer M, Pinket A, et al. Associations between food and beverage consumption and different types of sedentary behaviours in European preschoolers: the ToyBox-study. Eur J Nutr. 2017; 56(5): 1939-1951. https://doi.org/10.1007/s00394-016-1236-7 DOI: https://doi.org/10.1007/s00394-016-1236-7
Meigs J, Wilson P, Fox C, Vasan R, Nathan D, Sullivan L, et al. Body Mass Index, Metabolic Syndrome, and Risk of Type 2 Diabetes or Cardiovascular Disease. J Clinical Endocrinol Metab. 2006; 91(8): 2906-12. https://doi.org/10.1210/jc.2006-0594 DOI: https://doi.org/10.1210/jc.2006-0594
Arnlöv J, Ingelsson E, Sundström J, Lind L. Impact of Body Mass Index and the Metabolic Syndrome on the Risk of Cardiovascular Disease and Death in Middle-Aged Men. Circulation. 2010; 121(2): 230-6. https://doi.org/10.1161/CIRCULATIONAHA.109.887521 DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.887521
Kotani K, Tokunaga K, Fujioka S, Kobatake T, Keno Y, Yoshida S, et al. Sexual dimorphism of age-related changes in whole-body fat distribution in the obese. Int J Obes Relat Metab Disord. 1994; 18(4): 207-2.
Macotela Y, Boucher J, Tran TT, Kahn CR. Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes. 2009; 58(4): 803-12. https://doi.org/10.2337/db08-1054 DOI: https://doi.org/10.2337/db08-1054
Nokoff N, Thurston J, Hilkin A, Pyle L, Zeitler PS, Nadeau KJ, et al. Sex Differences in Effects of Obesity on Reproductive Hormones and Glucose Metabolism in Early Puberty. J Clin Endocrinol Metab. 2019; 104(10): 4390-7. https://doi.org/10.1210/jc.2018-02747 DOI: https://doi.org/10.1210/jc.2018-02747
Arnold AP, Gorski RA. Gonadal steroid induction of structural sex differences in the central nervous system. Annu Rev Neurosci. 1984; 7: 413-42. https://doi.org/10.1146/annurev.ne.07.030184.002213 DOI: https://doi.org/10.1146/annurev.ne.07.030184.002213
Chen X, McClusky R, Chen J, Beaven SW, Tontonoz P. The number of x chromosomes causes sex differences in adiposity in mice. PLoS Genet. 2012; 8(5): e1002709. https://doi.org/10.1371/journal.pgen.1002709 DOI: https://doi.org/10.1371/journal.pgen.1002709
Yanovski JA. Pediatric obesity. An introduction. Appetite. 2015; 93: 3-12. https://doi.org/10.1016/j.appet.2015.03.028 DOI: https://doi.org/10.1016/j.appet.2015.03.028
Masi S, Charakida M, Wang G, O'Neill F, Taddei S, Deanfield J. Hope for the future: early recognition of increased cardiovascular risk in children and how to deal with it. Eur J Cardiovasc Prev Rehabil. 2009; 16 Suppl 2: S61-4. https://doi.org/10.1097/01.hjr.0000359240.52185.51 DOI: https://doi.org/10.1097/01.hjr.0000359240.52185.51
Larqué E, Labayen I, Flodmark CE, Lissau I, Czernin S, Moreno LA, et al. From conception to infancy - early risk factors for childhood obesity. Nat Rev Endocrinol. 2019; 15(8): 456-78. https://doi.org/10.1038/s41574-019-0219-1 DOI: https://doi.org/10.1038/s41574-019-0219-1
Gibson EL, Androutsos O, Moreno L, Flores-Barrantes P, Socha P, Iotova V, et al. Influences of Parental Snacking- Related Attitudes, Behaviours and Nutritional Knowledge on Young Children's Healthy and Unhealthy Snacking: The ToyBox Study. Nutrients. 2020; 12(2): 432. https://doi.org/10.3390/nu12020432 DOI: https://doi.org/10.3390/nu12020432
Styne D, Arslanian S, Connor E, Farooqi I, Murad M, Silverstein J, et al. Pediatric Obesity-Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline. The Journal of clinical endocrinology and metabolism. 2017; 102(3). https://doi.org/10.1210/jc.2016-2573 DOI: https://doi.org/10.1210/jc.2016-2573
Vicente-Rodríguez G, Rey-López JP, Mesana MI, Poortvliet E, Ortega FB, Polito A, et al. Reliability and intermethod agreement for body fat assessment among two field and two laboratory methods in adolescents. Obesity (Silver Spring). 2012; 20(1): 221-8. https://doi.org/10.1038/oby.2011.272 DOI: https://doi.org/10.1038/oby.2011.272
Kragelund C, Hassager C, Hildebrandt P, Torp-Pedersen C, Køber L. Impact of Obesity on Long-Term Prognosis Following Acute Myocardial Infarction. Int J Cardiol. 2005; 98(1): 123-31. https://doi.org/10.1016/j.ijcard.2004.03.042 DOI: https://doi.org/10.1016/j.ijcard.2004.03.042
Brambilla P, Bedogni G, Moreno LA, Goran MI, Gutin B, Fox KR, et al. Crossvalidation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children. Int J Obes (Lond). 2006; 30(1): 23-30. https://doi.org/10.1038/sj.ijo.0803163 DOI: https://doi.org/10.1038/sj.ijo.0803163
Elshorbagy HH, Fouda ER, Kamal NM, Bassiouny MM, Fathi WM. Evaluation oF Epicardial Fat and Carotid Intima-Media Thickness in Obese Children. Iran J Pediatr. 2016; 26(1): e2968. https://doi.org/10.5812/ijp.2968 DOI: https://doi.org/10.5812/ijp.2968
Mason C, CL C, Katzmarzyk P. Influence of Central and Extremity Circumferences on All-Cause Mortality in Men and Women. Obesity (Silver Spring, Md). 2008; 16(12): 2690-5. https://doi.org/10.1038/oby.2008.438 DOI: https://doi.org/10.1038/oby.2008.438
Janssen I, Katzmarzyk P, Ross R. Waist Circumference and Not Body Mass Index Explains Obesity-Related Health Risk.. Am J Clin Nutr.2004; 79(3): 379-84. https://doi.org/10.1093/ajcn/79.3.379 DOI: https://doi.org/10.1093/ajcn/79.3.379
Blüher S, Molz E, Wiegand S, Otto KP, Sergeyev E, Tuschy S, et al. Body mass index, waist circumference, and waist-toheight ratio as predictors of cardiometabolic risk in childhood obesity depending on pubertal development. J Clin Endocrinol Metab. 2013; 98(8): 3384-93. https://doi.org/10.1210/jc.2013-1389 DOI: https://doi.org/10.1210/jc.2013-1389
Sijtsma A, Bocca G, L'Abée C, Liem ET, Sauer PJ, Corpeleijn E. Waist-to-height ratio, waist circumference and BMI as indicators of percentage fat mass and cardiometabolic risk factors in children aged 3-7 years. Clin Nutr. 2014; 33(2): 311-5. https://doi.org/10.1016/j.clnu.2013.05.010 DOI: https://doi.org/10.1016/j.clnu.2013.05.010
Vizmanos B, Martí-Henneberg C. Puberty begins with a characteristic subcutaneous body fat mass in each sex. Eur J Clin Nutr. 2000; 54(3): 203-8. https://doi.org/10.1038/sj.ejcn.1600920 DOI: https://doi.org/10.1038/sj.ejcn.1600920
Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, et al. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth. PLoS Comput Biol. 2009; 5(3): e1000324. https://doi.org/10.1371/journal.pcbi.1000324 DOI: https://doi.org/10.1371/journal.pcbi.1000324
Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med. 2013; 19(10): 1338- 44. https://doi.org/10.1038/nm.3324 DOI: https://doi.org/10.1038/nm.3324
Lundgren M, Svensson M, Lindmark S, Renstrom F, Ruge T, Eriksson JW. Fat cell enlargement is an independent marker of insulin resistance and 'hyperleptinaemia'. Diabetologia. 2007; 50(3): 625-33. https://doi.org/10.1007/s00125-006-0572-1 DOI: https://doi.org/10.1007/s00125-006-0572-1
Gealekman O, Guseva N, Hartigan C, Apotheker S, Gorgoglione M, Gurav K, et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011; 123(2): 186-94. https://doi.org/10.1161/CIRCULATIONAHA.110.970145 DOI: https://doi.org/10.1161/CIRCULATIONAHA.110.970145
Gallagher D, Visser M, Sepulveda D, Pierson RN, Harris T, Heymsfield SB. How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol. 1996; 143(3): 228-39. https://doi.org/10.1093/oxfordjournals.aje.a008733 DOI: https://doi.org/10.1093/oxfordjournals.aje.a008733
Shen W, Punyanitya M, Silva AM, Chen J, Gallagher D, Sardinha LB, et al. Sexual dimorphism of adipose tissue distribution across the lifespan: a cross-sectional whole-body magnetic resonance imaging study. Nutr Metab (Lond). 2009; 6: 17. https://doi.org/10.1186/1743-7075-6-17 DOI: https://doi.org/10.1186/1743-7075-6-17
Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes (Lond). 2010; 34(6): 949-59. https://doi.org/10.1038/ijo.2009.286 DOI: https://doi.org/10.1038/ijo.2009.286
Weihrauch-Blüher S, Wiegand S. Risk Factors and Implications of Childhood Obesity. Curr Obes Rep. 2018; 7(4): 254-9. https://doi.org/10.1007/s13679-018-0320-0 DOI: https://doi.org/10.1007/s13679-018-0320-0
Gungor NK. Overweight and obesity in children and adolescents. J Clin Res Pediatr Endocrinol. 2014; 6(3): 129- 43. https://doi.org/10.4274/jcrpe.1471 DOI: https://doi.org/10.4274/jcrpe.1471
Wiegand S, Maikowski U, Blankenstein O, Biebermann H, Tarnow P, Grüters A. Type 2 diabetes and impaired glucose tolerance in European children and adolescents with obesity -- a problem that is no longer restricted to minority groups. Eur J Endocrinol. 2004; 151(2): 199-206. https://doi.org/10.1530/eje.0.1510199 DOI: https://doi.org/10.1530/eje.0.1510199
Biltoft CA, Muir A. The metabolic syndrome in children and adolescents: a clinician's guide. Adolesc Med State Art Rev. 2009; 20(1): 109-20, ix. DOI: https://doi.org/10.1542/9781581104073-the
Olza J, Gil-Campos M, Leis R, Bueno G, Aguilera CM, Valle M, et al. Presence of the metabolic syndrome in obese children at prepubertal age. Ann Nutr Metab. 2011; 58(4): 343-50. https://doi.org/10.1159/000331996 DOI: https://doi.org/10.1159/000331996
Zimmet P, Alberti K, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents - an IDF consensus report. Pediatric diabetes. 2007; 8(5). https://doi.org/10.1111/j.1399-5448.2007.00271.x DOI: https://doi.org/10.1111/j.1399-5448.2007.00271.x
Lee S, Bacha F, Arslanian SA. Waist circumference, blood pressure, and lipid components of the metabolic syndrome. J Pediatr. 2006; 149(6): 809-16. https://doi.org/10.1016/j.jpeds.2006.08.075 DOI: https://doi.org/10.1016/j.jpeds.2006.08.075
Hirschler V, Calcagno ML, Aranda C, Maccallini G, Jadzinsky M. Can the metabolic syndrome identify children with insulin resistance? Pediatr Diabetes. 2007; 8(5): 272-7. https://doi.org/10.1111/j.1399-5448.2007.00282.x DOI: https://doi.org/10.1111/j.1399-5448.2007.00282.x
Tresaco B, Bueno G, Pineda I, Moreno LA, Garagorri JM, Bueno M. Homeostatic model assessment (HOMA) index cut-off values to identify the metabolic syndrome in children. J Physiol Biochem. 2005; 61(2): 381-8. https://doi.org/10.1007/BF03167055 DOI: https://doi.org/10.1007/BF03167055
Tresaco B, Moreno LA, Ruiz JR, Ortega FB, Bueno G, González-Gross M, et al. Truncal and abdominal fat as determinants of high triglycerides and low HDL-cholesterol in adolescents. Obesity (Silver Spring). 2009; 17(5): 1086-91. https://doi.org/10.1038/oby.2008.626 DOI: https://doi.org/10.1038/oby.2008.626
Musso C, Graffigna M, Soutelo J, Honfi M, Ledesma L, Miksztowicz V, et al. Cardiometabolic risk factors as apolipoprotein B, triglyceride/HDL-cholesterol ratio and Creactive protein, in adolescents with and without obesity: cross-sectional study in middle class suburban children. Pediatr Diabetes. 2011; 12(3 Pt 2): 229-34. https://doi.org/10.1111/j.1399-5448.2010.00710.x DOI: https://doi.org/10.1111/j.1399-5448.2010.00710.x
Prevalence of abnormal lipid levels among youths - United States, 1999-2006. MMWR Morb Mortal Wkly Rep. 2010; 59(2): 29-33.
Neyla de Lima Albuquerque M, da Silva Diniz A, Kruze Grande de Arruda I. apolipoproteins and their association with cardiometabolic risk biomarkers in adolescents. Nutr Hosp. 2015; 32(6): 2674-83.
Castro APP, Hermsdorff HHM, Milagres LC, Albuquerque FM, Filgueiras MS, Rocha NP, et al. Increased ApoB/ApoA1 ratio is associated with excess weight, body adiposity, and altered lipid profile in children. J Pediatr (Rio J). 2019; 95(2): 238-46. https://doi.org/10.1016/j.jped.2017.12.008 DOI: https://doi.org/10.1016/j.jped.2017.12.008
Clegg DJ. Minireview: the year in review of estrogen regulation of metabolism. Mol Endocrinol. 2012; 26(12): 1957-60. https://doi.org/10.1210/me.2012-1284 DOI: https://doi.org/10.1210/me.2012-1284
Clegg D, Hevener AL, Moreau KL, Morselli E, Criollo A, Van Pelt RE, et al. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors. Endocrinology. 2017; 158(5): 1095-105. https://doi.org/10.1210/en.2016-1677 DOI: https://doi.org/10.1210/en.2016-1677
DeBoer MD. Assessing and Managing the Metabolic Syndrome in Children and Adolescents. Nutrients. 2019; 11(8): 1788. https://doi.org/10.3390/nu11081788 DOI: https://doi.org/10.3390/nu11081788
Juonala M, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med. 2011; 365(20): 1876-85. https://doi.org/10.1056/NEJMoa1010112 DOI: https://doi.org/10.1056/NEJMoa1010112
Twig G, Yaniv G, Levine H, Leiba A, Goldberger N, Derazne E, et al. Body-Mass Index in 2.3 Million Adolescents and Cardiovascular Death in Adulthood. N Engl J Med. 2016; 374(25): 2430-40. https://doi.org/10.1056/NEJMoa1503840 DOI: https://doi.org/10.1056/NEJMoa1503840
Abdullah A, Stoelwinder J, Shortreed S, Wolfe R, Stevenson C, Walls H, et al. The duration of obesity and the risk of type 2 diabetes. Public Health Nutr. 2011; 14(1): 119-26. https://doi.org/10.1017/S1368980010001813 DOI: https://doi.org/10.1017/S1368980010001813
Baker JL, Olsen LW, Sørensen TI.
[Childhood body mass index and the risk of coronary heart disease in adulthood]. Ugeskr Laeger. 2008; 170(33): 2434-7. https://doi.org/10.1016/j.jvs.2008.02.015 DOI: https://doi.org/10.1016/j.jvs.2008.02.015
Tirosh A, Shai I, Afek A, Dubnov-Raz G, Ayalon N, Gordon B, et al. Adolescent BMI trajectory and risk of diabetes versus coronary disease. N Engl J Med. 2011; 364(14): 1315-25. https://doi.org/10.1056/NEJMoa1006992 DOI: https://doi.org/10.1056/NEJMoa1006992
Kelsey MM, Zeitler PS. Insulin Resistance of Puberty. Curr Diab Rep. 2016; 16(7): 64. https://doi.org/10.1007/s11892-016-0751-5 DOI: https://doi.org/10.1007/s11892-016-0751-5
Gilardini L, McTernan PG, Girola A, da Silva NF, Alberti L, Kumar S, et al. Adiponectin is a candidate marker of metabolic syndrome in obese children and adolescents. Atherosclerosis. 2006; 189(2): 401-7. https://doi.org/10.1016/j.atherosclerosis.2005.12.021 DOI: https://doi.org/10.1016/j.atherosclerosis.2005.12.021
Huang KC, Lin RC, Kormas N, Lee LT, Chen CY, Gill TP, et al. Plasma leptin is associated with insulin resistance independent of age, body mass index, fat mass, lipids, and pubertal development in nondiabetic adolescents. Int J Obes Relat Metab Disord. 2004; 28(4): 470-5. https://doi.org/10.1038/sj.ijo.0802531 DOI: https://doi.org/10.1038/sj.ijo.0802531
Pérez CM, Ortiz AP, Fuentes-Mattei E, Velázquez-Torres G, Santiago D, Giovannetti K, et al. High prevalence of cardiometabolic risk factors in Hispanic adolescents: correlations with adipocytokines and markers of inflammation. J Immigr Minor Health. 2014; 16(5): 865-73. https://doi.org/10.1007/s10903-013-9866-9 DOI: https://doi.org/10.1007/s10903-013-9866-9
Tsuchida A, Yamauchi T, Takekawa S, Hada Y, Ito Y, Maki T, et al. Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes. 2005; 54(12): 3358-70. https://doi.org/10.2337/diabetes.54.12.3358 DOI: https://doi.org/10.2337/diabetes.54.12.3358
Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003; 423(6941): 762- 9. https://doi.org/10.1038/nature01705 DOI: https://doi.org/10.1038/nature01705
Okamoto Y, Kihara S, Funahashi T, Matsuzawa Y, Libby P. Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci (Lond). 2006; 110(3): 267-78. https://doi.org/10.1042/CS20050182 DOI: https://doi.org/10.1042/CS20050182
Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007; 13(3): 332-9. https://doi.org/10.1038/nm1557 DOI: https://doi.org/10.1038/nm1557
Shafiee G, Ahadi Z, Qorbani M, Kelishadi R, Ziauddin H, Larijani B, et al. Association of adiponectin and metabolic syndrome in adolescents: the caspian- III study. J Diabetes Metab Disord. 2015; 14: 89. https://doi.org/10.1186/s40200-015-0220-8 DOI: https://doi.org/10.1186/s40200-015-0220-8
Sparrenberger K, Sbaraini M, Cureau FV, Teló GH, Bahia L, Schaan BD. Higher adiponectin concentrations are associated with reduced metabolic syndrome risk independently of weight status in Brazilian adolescents. Diabetol Metab Syndr. 2019; 11: 40. https://doi.org/10.1186/s13098-019-0435-9 DOI: https://doi.org/10.1186/s13098-019-0435-9
Winer JC, Zern TL, Taksali SE, Dziura J, Cali AM, Wollschlager M, et al. Adiponectin in childhood and adolescent obesity and its association with inflammatory markers and components of the metabolic syndrome. J Clin Endocrinol Metab. 2006; 91(11): 4415-23. https://doi.org/10.1210/jc.2006-0733 DOI: https://doi.org/10.1210/jc.2006-0733
Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996; 334(5): 292-5. https://doi.org/10.1056/NEJM199602013340503 DOI: https://doi.org/10.1056/NEJM199602013340503
Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998; 395(6704): 763-70. https://doi.org/10.1038/27376 DOI: https://doi.org/10.1038/27376
Argente J, Barrios V, Chowen JA, Sinha MK, Considine RV. Leptin plasma levels in healthy Spanish children and adolescents, children with obesity, and adolescents with anorexia nervosa and bulimia nervosa. J Pediatr. 1997; 131(6): 833-8. https://doi.org/10.1016/S0022-3476(97)70029-5 DOI: https://doi.org/10.1016/S0022-3476(97)70029-5
Blum WF, Englaro P, Hanitsch S, Juul A, Hertel NT, Muller J, et al. Plasma leptin levels in healthy children and adolescents: dependence on body mass index, body fat mass, gender, pubertal stage, and testosterone. J Clin Endocrinol Metab. 1997; 82(9): 2904-10. https://doi.org/10.1210/jcem.82.9.4251 DOI: https://doi.org/10.1210/jcem.82.9.4251
Mantzoros CS. The role of leptin in human obesity and disease: a review of current evidence. Ann Intern Med. 1999; 130(8): 671-80. https://doi.org/10.7326/0003-4819-130-8-199904200-00014 DOI: https://doi.org/10.7326/0003-4819-130-8-199904200-00014
Frederich RC, Lollmann B, Hamann A, Napolitano-Rosen A, Kahn BB, Lowell BB, et al. Expression of ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. J Clin Invest. 1995; 96(3): 1658-63. https://doi.org/10.1172/JCI118206 DOI: https://doi.org/10.1172/JCI118206
Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995; 1(11): 1155-61. https://doi.org/10.1038/nm1195-115581 DOI: https://doi.org/10.1038/nm1195-1155
El-Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C, Flier JS. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest. 2000; 105(12): 1827-32. https://doi.org/10.1172/JCI9842 DOI: https://doi.org/10.1172/JCI9842
Chu NF, Wang DJ, Shieh SM, Rimm EB. Plasma leptin concentrations and obesity in relation to insulin resistance syndrome components among school children in Taiwan-- The Taipei Children Heart Study. Int J Obes Relat Metab Disord. 2000; 24(10): 1265-71. https://doi.org/10.1038/sj.ijo.0801404 DOI: https://doi.org/10.1038/sj.ijo.0801404
Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002; 110(8): 1093-103. https://doi.org/10.1172/JCI0215693 DOI: https://doi.org/10.1172/JCI0215693
Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab. 2011; 301(4): E567-84. https://doi.org/10.1152/ajpendo.00315.2011 DOI: https://doi.org/10.1152/ajpendo.00315.2011
Varda NM, Medved M, Ojsteršek L. The associations between some biological markers, obesity, and cardiovascular risk in Slovenian children and adolescents. BMC Pediatr. 2020; 20(1): 81. https://doi.org/10.1186/s12887-020-1978-5 DOI: https://doi.org/10.1186/s12887-020-1978-5
Zhang M, Cheng H, Zhao X, Hou D, Yan Y, Cianflone K, et al. Leptin and Leptin-to-Adiponectin Ratio Predict Adiposity Gain in Nonobese Children over a Six-Year Period. Child Obes. 2017; 13(3): 213-21. https://doi.org/10.1089/chi.2016.0273 DOI: https://doi.org/10.1089/chi.2016.0273
Vasquez F, Correa-Burrows P, Blanco E, Gahagan S, Burrows R. A waist-to-height ratio of 0.54 is a good predictor of metabolic syndrome in 16-year-old male and female adolescents. Pediatr Res. 2019; 85(3): 269-74. https://doi.org/10.1038/s41390-018-0257-8 DOI: https://doi.org/10.1038/s41390-018-0257-8
Yin C, Hu W, Wang M, Xiao Y. The role of the adipocytokines vaspin and visfatin in vascular endothelial function and insulin resistance in obese children. BMC Endocr Disord. 2019; 19(1): 127. https://doi.org/10.1186/s12902-019-0452-6 DOI: https://doi.org/10.1186/s12902-019-0452-6
Li RZ, Ma X, Hu XF, Kang SX, Chen SK, Cianflone K, et al. Elevated visfatin levels in obese children are related to proinflammatory factors. J Pediatr Endocrinol Metab. 2013; 26(1-2): 111-8.
Rupérez AI, Olza J, Gil-Campos M, Leis R, Bueno G, Aguilera CM, et al. Cardiovascular risk biomarkers and metabolically unhealthy status in prepubertal children: Comparison of definitions. Nutr Metab Cardiovasc Dis. 2018; 28(5): 524-30. https://doi.org/10.1016/j.numecd.2018.02.006 DOI: https://doi.org/10.1016/j.numecd.2018.02.006
Chen XY, Zhang JH, Liu F, Liu HM, Song YY, Liu YL. Association of serum resistin levels with metabolic syndrome and early atherosclerosis in obese Chinese children. J Pediatr Endocrinol Metab. 2013; 26(9-10): 855-60. https://doi.org/10.1515/jpem-2012-0326 DOI: https://doi.org/10.1515/jpem-2012-0326
Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med. 2014; 371(23): 2237-8. https://doi.org/10.1056/NEJMra1011035 DOI: https://doi.org/10.1056/NEJMc1412427
Weiss R. Impaired glucose tolerance and risk factors for progression to type 2 diabetes in youth. Pediatr Diabetes. 2007; 8 Suppl 9: 70-5. https://doi.org/10.1111/j.1399-5448.2007.00336.x DOI: https://doi.org/10.1111/j.1399-5448.2007.00336.x
Fitzgibbons T, Czech M. Epicardial and Perivascular Adipose Tissues and Their Influence on Cardiovascular Disease: Basic Mechanisms and Clinical Associations. J Am Heart Assoc. 2014; 3(2): e000582. https://doi.org/10.1161/JAHA.113.000582 DOI: https://doi.org/10.1161/JAHA.113.000582
De Pergola G, Campobasso N, Nardecchia A, Triggiani V, Caccavo D, Gesualdo L, et al. Para- and perirenal ultrasonographic fat thickness is associated with 24-hours mean diastolic blood pressure levels in overweight and obese subjects. BMC Cardiovasc Disord. 2015; 15: 108. https:// doi: 10.1186/s12872-015-0101-6 DOI: https://doi.org/10.1186/s12872-015-0101-6
Kapiotis S, Holzer G, Schaller G, Haumer M, Widhalm H, Weghuber D, et al. A proinflammatory state is detectable in obese children and is accompanied by functional and morphological vascular changes. Arterioscler Thromb Vasc Biol. 2006; 26(11): 2541-6. https://doi.org/10.1161/01.ATV.0000245795.08139.70
Mărginean CO, Meliţ LE, Ghiga DV, Mărginean MO. Early Inflammatory Status Related to Pediatric Obesity. Front Pediatr. 2019; 7: 241. https://doi.org/10.3389/fped.2019.00241 DOI: https://doi.org/10.3389/fped.2019.00241
Skinner AC, Steiner MJ, Henderson FW, Perrin EM. Multiple markers of inflammation and weight status: cross-sectional analyses throughout childhood. Pediatrics. 2010; 125(4): e801-9. https://doi.org/10.1542/peds.2009-2182 DOI: https://doi.org/10.1542/peds.2009-2182
Caprio S, Perry R, Kursawe R. Adolescent Obesity and Insulin Resistance: Roles of Ectopic Fat Accumulation and Adipose Inflammation. Gastroenterology. 2017; 152(7): 1638-46. https://doi.org/10.1053/j.gastro.2016.12.051 DOI: https://doi.org/10.1053/j.gastro.2016.12.051
Wärnberg J, Nova E, Moreno LA, Romeo J, Mesana MI, Ruiz JR, et al. Inflammatory proteins are related to total and abdominal adiposity in a healthy adolescent population: the AVENA Study. Am J Clin Nutr. 2006; 84(3): 505-12. https://doi.org/10.1093/ajcn/84.3.505 DOI: https://doi.org/10.1093/ajcn/84.3.505
Nappo A, Iacoviello L, Fraterman A, Gonzalez-Gil EM, Hadjigeorgiou C, Marild S, et al. High-sensitivity C-reactive protein is a predictive factor of adiposity in children: results of the identification and prevention of dietary- and lifestyleinduced health effects in children and infants (IDEFICS) study. J Am Heart Assoc. 2013; 2(3): e000101. https://doi.org/10.1161/JAHA.113.000101 DOI: https://doi.org/10.1161/JAHA.113.000101
Olza J, Aguilera CM, Gil-Campos M, Leis R, Bueno G, Valle M, et al. A Continuous Metabolic Syndrome Score Is Associated with Specific Biomarkers of Inflammation and CVD Risk in Prepubertal Children. Ann Nutr Metab. 2015; 66(2-3): 72-9. https://doi.org/10.1159/000369981 DOI: https://doi.org/10.1159/000369981
Anguita-Ruiz A, Mendez-Gutierrez A, Ruperez AI, Leis R, Bueno G, Gil-Campos M, et al. The protein S100A4 as a novel marker of insulin resistance in prepubertal and pubertal children with obesity. Metabolism. 2020; 105: 154187. https://doi.org/10.1016/j.metabol.2020.154187 DOI: https://doi.org/10.1016/j.metabol.2020.154187
Frühbeck G, Catalán V, Rodríguez A, Ramírez B, Becerril S, Salvador J, et al. Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci Rep. 2017; 7(1): 6619. https://doi.org/10.1038/s41598-017-06997-0 DOI: https://doi.org/10.1038/s41598-017-06997-0
Frühbeck G, Catalán V, Rodríguez A, Ramírez B, Becerril S, Salvador J, et al. Adiponectin-leptin Ratio is a Functional Biomarker of Adipose Tissue Inflammation. Nutrients. 2019; 11(2). https://doi.org/10.3390/nu11020454 DOI: https://doi.org/10.3390/nu11020454
Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol Rev. 2016; 96(4): 1297-325. https://doi.org/10.1152/physrev.00041.2015 DOI: https://doi.org/10.1152/physrev.00041.2015
Iacomino G, Russo P, Marena P, Lauria F, Venezia A, Ahrens W, et al. Circulating microRNAs are associated with early childhood obesity: results of the I. Family Study. Genes Nutr. 2019; 14: 2. https://doi.org/10.1186/s12263-018-0622-6 DOI: https://doi.org/10.1186/s12263-018-0622-6
Cui X, You L, Zhu L, Wang X, Zhou Y, Li Y, et al. Change in circulating microRNA profile of obese children indicates future risk of adult diabetes. Metabolism. 2018; 78: 95-105. https://doi.org/10.1016/j.metabol.2017.09.006 DOI: https://doi.org/10.1016/j.metabol.2017.09.006
Bastien M, Poirier P, Lemieux I, Després J. Overview of Epidemiology and Contribution of Obesity to Cardiovascular Disease. Prog Cardiovasc Dis. 2014; 56(4): 369-81. https://doi.org/10.1016/j.pcad.2013.10.016 DOI: https://doi.org/10.1016/j.pcad.2013.10.016
de Simone G, Devereux R, Kizer J, Chinali M, Bella J, Oberman A, et al. Body Composition and Fat Distribution Influence Systemic Hemodynamics in the Absence of Obesity: The HyperGEN Study. Am J Clin Nutr. 2005; 81(4): 757-61. https://doi.org/10.1093/ajcn/81.4.757 DOI: https://doi.org/10.1093/ajcn/81.4.757
Alpert M. Obesity Cardiomyopathy: Pathophysiology and Evolution of the Clinical Syndrome. Am J Med Sci. 2001; 321(4): 225-36. https://doi.org/10.1097/00000441-200104000-00003 DOI: https://doi.org/10.1097/00000441-200104000-00003
Rowland TW. Effect of Obesity on Cardiac Function in Children and Adolescents: A Review. J Sports Sci Med. 2007; (3): 319-26. DOI: https://doi.org/10.1016/S0162-0908(08)70220-4
de Simone G, Daniels S, Devereux R, Meyer R, Roman M, de Divitiis O, et al. Left Ventricular Mass and Body Size in Normotensive Children and Adults: Assessment of Allometric Relations and Impact of Overweight. J Am Coll Cardiol. 1992; 20(5): 1251-60. https://doi.org/10.1016/0735-1097(92)90385-Z DOI: https://doi.org/10.1016/0735-1097(92)90385-Z
Dewey F, Rosenthal D, Murphy D, Froelicher V, Ashley E. Does size matter? Clinical applications of scaling cardiac size and function for body size. Circulation. 2008; 117(17): 2279- 87. https://doi.org/10.1161/CIRCULATIONAHA.107.736785 DOI: https://doi.org/10.1161/CIRCULATIONAHA.107.736785
Sivanandam S, Sinaiko A, Jacobs D, Steffen L, Moran A, Steinberger J. Relation of Increase in Adiposity to Increase in Left Ventricular Mass From Childhood to Young Adulthood. Am J Cardiol. 2006; 98(3): 411-5. https://doi.org/10.1016/j.amjcard.2006.02.044 DOI: https://doi.org/10.1016/j.amjcard.2006.02.044
Crowley D, Khoury P, Urbina E, Ippisch H, Kimball T. Cardiovascular Impact of the Pediatric Obesity Epidemic: Higher Left Ventricular Mass Is Related to Higher Body Mass Index. J Pediatr. 2011; 158(5): 709-714.e1. https://doi.org/10.1016/j.jpeds.2010.10.016 DOI: https://doi.org/10.1016/j.jpeds.2010.10.016
Chinali M, de Simone G, Roman M, Lee E, Best L, Howard B, et al. Impact of Obesity on Cardiac Geometry and Function in a Population of Adolescents: The Strong Heart Study. J Am Coll Cardiol. 2006; 47(11): 2267-73. https://doi.org/10.1016/j.jacc.2006.03.004 DOI: https://doi.org/10.1016/j.jacc.2006.03.004
Litwin M, Niemirska A, Sladowska J, Antoniewicz J, Daszkowska J, Wierzbicka A, et al. Left Ventricular Hypertrophy and Arterial Wall Thickening in Children With Essential Hypertension. Pediatric Nephrology. 2006; 21(6): 811-9. https://doi.org/10.1007/s00467-006-0068-8 DOI: https://doi.org/10.1007/s00467-006-0068-8
Lang R, Bierig M, Devereux R, Flachskampf F, Foster E, Pellikka P, et al. Recommendations for Chamber Quantification. European journal of echocardiography : the journal of the Working Group on Echocardiography of the Eur J Echocardiogr. 2006; 7(2): 79-108. https://doi.org/10.1016/j.euje.2005.12.014 DOI: https://doi.org/10.1016/j.euje.2005.12.014
Zhang C, Deng Y, Y L, Xu Y, Liu Y, Zhang L, et al. Preclinical Cardiovascular Changes in Children With Obesity: A Real- Time 3-dimensional Speckle Tracking Imaging Study. PloS one. 2018; 13(10): e0205177. https://doi.org/10.1371/journal.pone.0205177 DOI: https://doi.org/10.1371/journal.pone.0205177
Dhuper S, Abdullah R, Weichbrod L, Mahdi E, Cohen H. Association of Obesity and Hypertension With Left Ventricular Geometry and Function in Children and Adolescents. Obesity (Silver Spring, Md). 2011; 19(1): 128- 33. https://doi.org/10.1038/oby.2010.134 DOI: https://doi.org/10.1038/oby.2010.134
Krumholz H, Larson M, Levy D. Prognosis of Left Ventricular Geometric Patterns in the Framingham Heart Study. J Am Coll Cardiol. 1995; 25(4): 879-84. https://doi.org/10.1016/0735-1097(94)00473-4 DOI: https://doi.org/10.1016/0735-1097(94)00473-4
Dušan P, Tamara I, Goran V, Gordana M, Amira P. Left Ventricular Mass and Diastolic Function in Obese Children and Adolescents. Pediatr Nephrol. 2015; 30(4): 645-52. https://doi.org/10.1007/s00467-014-2992-3 DOI: https://doi.org/10.1007/s00467-014-2992-3
Yoon EY, Cohn L, Rocchini A, Kershaw D, Freed G, Ascione F, et al. Use of Diagnostic Tests in Adolescents With Essential Hypertension. Arch Pediatr Adolesc Med. 2012; 166(9): 857-62. https://doi.org/10.1001/archpediatrics.2012.1173 DOI: https://doi.org/10.1001/archpediatrics.2012.1173
Brady T, Fivush B, Flynn J, Parekh R. Ability of Blood Pressure to Predict Left Ventricular Hypertrophy in Children With Primary Hypertension J Pediatr. 2008; 152(1): 73-8. https://doi.org/10.1016/j.jpeds.2007.05.053 DOI: https://doi.org/10.1016/j.jpeds.2007.05.053
Moaref A, Faraji M, Tahamtan M. Subclinical left ventricular systolic dysfunction in patients with metabolic syndrome: A case-control study using two-dimensional speckle tracking echocardiography. ARYA Atheroscler. 2016; 12: p. 254-258.
Di Salvo G, Pacileo G, Del Giudice E, Natale F, Limongelli G, Verrengia M, et al. Abnormal myocardial deformation properties in obese, non-hypertensive children: an ambulatory blood pressure monitoring, standard echocardiographic, and strain rate imaging study. Eur Heart J. 2006; 27(22): 2689-95. https://doi.org/10.1093/eurheartj/ehl163 DOI: https://doi.org/10.1093/eurheartj/ehl163
Jing L, Pulenthiran A, Nevius C, Mejia-Spiegeler A, Suever J, Wehner G, et al. Impaired Right Ventricular Contractile Function in Childhood Obesity and Its Association With Right and Left Ventricular Changes: A Cine DENSE Cardiac Magnetic Resonance Study. Journal of cardiovascular magnetic resonance: official journal of the Society for Cardiovasc Magn Reson. 2017; 19(1): 49. https://doi.org/10.1186/s12968-017-0363-5 DOI: https://doi.org/10.1186/s12968-017-0363-5
Wan SH, Vogel MW, Chen HH. Preclinical Diastolic Dysfunction. J Am Coll Cardiol. 2014; 63(5): 407-16. https://doi.org/10.1016/j.jacc.2013.10.063 DOI: https://doi.org/10.1016/j.jacc.2013.10.063
Caudron J, Fares J, Bauer F, Dacher J. Evaluation of left ventricular diastolic function with cardiac MR imaging. Radiographics. 2011; 31(1): 239-59. https://doi.org/10.1148/rg.311105049 DOI: https://doi.org/10.1148/rg.311105049
Støylen A, Slørdahl S, Skjelvan G, Heimdal A, Skjaerpe T. Strain rate imaging in normal and reduced diastolic function: comparison with pulsed Doppler tissue imaging of the mitral annulus. J Am Soc Echocardiogr. 2001; 14(4): 264-74. https://doi.org/10.1067/mje.2001.110375 DOI: https://doi.org/10.1067/mje.2001.110375
Opdahl A, Remme E, Helle-Valle T, Edvardsen T, Smiseth O. Myocardial relaxation, restoring forces, and early-diastolic load are independent determinants of left ventricular untwisting rate. Circulation. 2012; 126(12): 1441-51. https://doi.org/10.1161/CIRCULATIONAHA.111.080861 DOI: https://doi.org/10.1161/CIRCULATIONAHA.111.080861
Sharpe J, Naylor L, Jones T, Davis E, O'Driscoll G, Ramsay J, et al. Impact of Obesity on Diastolic Function in Subjects. Am J Cardiol. 2006; 98(5): 691-3. https://doi.org/10.1016/j.amjcard.2006.03.052 DOI: https://doi.org/10.1016/j.amjcard.2006.03.052
Porcar-Almela M, Codoñer-Franch P, Tuzón M, Navarro- Solera M, Carrasco-Luna J, Ferrando J. Left Ventricular Diastolic Function and Cardiometabolic Factors in Obese Normotensive Children. Nutr Metab, cardiovasc Dis: NMCD. 2015; 25(1): 108-115. https://doi.org/10.1016/j.numecd.2014.08.013 DOI: https://doi.org/10.1016/j.numecd.2014.08.013
Ross R. The Pathogenesis of Atherosclerosis: A Perspective for the 1990s. Nature. 1993; 362(6423): 801-9. https://doi.org/10.1038/362801a0 DOI: https://doi.org/10.1038/362801a0
Poirier P, Giles T, Bray G, Hong Y, Stern J, Pi-Sunyer F, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006; 113(6): 898-918. https://doi.org/10.1161/CIRCULATIONAHA.106.171016 DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.171016
Newman W, Freedman D, Voors A, Gard P, Srinivasan S, Cresanta J, et al. Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. The Bogalusa Heart Study. N Engl J Med. 1986; 314(3): 138-44. https://doi.org/10.1056/NEJM198601163140302 DOI: https://doi.org/10.1056/NEJM198601163140302
Gokce N, Keaney J, Hunter L, Watkins M, Nedeljkovic Z, Menzoian J, et al. Predictive Value of Noninvasively Determined Endothelial Dysfunction for Long-Term Cardiovascular Events in Patients With Peripheral Vascular Disease. J Am Coll Cardiol. 2003; 41(10): 1769-75. https://doi.org/10.1016/S0735-1097(03)00333-4 DOI: https://doi.org/10.1016/S0735-1097(03)00333-4
Widlansky M, Gokce N, Keaney J, Vita J. The Clinical Implications of Endothelial Dysfunction. J Am Coll Cardiol. 2003; 42(7):1149-60. https://doi.org/10.1016/S0735-1097(03)00994-X DOI: https://doi.org/10.1016/S0735-1097(03)00994-X
Aggoun Y, Farpour-Lambert N, Marchand L, Golay E, Maggio A, Beghetti M. Impaired endothelial and smooth muscle functions and arterial stiffness appear before puberty in obese children and are associated with elevated ambulatory blood pressure. Eur Heart J. 2008; 29(6): 792-9. https://doi.org/10.1093/eurheartj/ehm633 DOI: https://doi.org/10.1093/eurheartj/ehm633
Bhattacharjee R, Alotaibi WH, Kheirandish-Gozal L, Capdevila OS, Gozal D. Endothelial dysfunction in obese non-hypertensive children without evidence of sleep disordered breathing. BMC Pediatr. 2010; 10: 8. DOI: https://doi.org/10.1186/1471-2431-10-8
Yilmazer M, V T, Carti O, Mese T, Güven B, Aydin B, et al. Cardiovascular risk factors and noninvasive assessment of arterial structure and function in obese Turkish children. Eur J Pediatr. 2010; 169(10): 1241-8. https://doi.org/10.1007/s00431-010-1216-5 DOI: https://doi.org/10.1007/s00431-010-1216-5
Kapiotis S, Holzer G, Schaller G, Haumer M, Widhalm H, Weghuber D, et al. A proinflammatory state is detectable in obese children and is accompanied by functional and morphological vascular changes. Arterioscler, Thromb Vas Biol. 2006; 26(11): 2541-6. https://doi.org/10.1161/01.ATV.0000245795.08139.70 DOI: https://doi.org/10.1161/01.ATV.0000245795.08139.70
Koopman L, McCrindle B, Slorach C, Chahal N, Hui W, Sarkola T, et al. Interaction between myocardial and vascular changes in obese children: a pilot study. J Am Soc Echocardiogr. 2012; 25(4): 401-410.e.1. https://doi.org/10.1016/j.echo.2011.12.018 DOI: https://doi.org/10.1016/j.echo.2011.12.018
Tryggestad J, Thompson D, Copeland K, Short K. Obese children have higher arterial elasticity without a difference in endothelial function: the role of body composition. Obesity (Silver Spring, Md). 2012; 20(1): 165-71 https://doi.org/10.1038/oby.2011.309 DOI: https://doi.org/10.1038/oby.2011.309
Lo M, Lin I, Lu P, Huang C, Chien S, Hsieh K, et al. Evaluation of endothelial dysfunction, endothelial plasma markers, and traditional metabolic parameters in children with adiposity. J Formos Med Assoc. 2019; 118(1 Pt 1): 83- 91. https://doi.org/10.1016/j.jfma.2018.01.007 DOI: https://doi.org/10.1016/j.jfma.2018.01.007
Witte D, Westerink J, de Koning E, van der Graaf Y, Grobbee D, Bots M. Is the Association Between Flow-Mediated Dilation and Cardiovascular Risk Limited to Low-Risk Populations? J Am Coll Cardiol. 2005; 45(12): 1987-93. https://doi.org/10.1016/j.jacc.2005.02.073 DOI: https://doi.org/10.1016/j.jacc.2005.02.073
Mattace-Raso F, van der Cammen T, Hofman A, van Popele N, Bos M, Schalekamp M, et al. Arterial Stiffness and Risk of Coronary Heart Disease and Stroke: The Rotterdam Study. Circulation. 2006; 113(5): 657-63. https://doi.org/10.1161/CIRCULATIONAHA.105.555235 DOI: https://doi.org/10.1161/CIRCULATIONAHA.105.555235
Labropoulos N, Ashraf Mansour M, Kang S, Oh D, Buckman J, Baker W. Viscoelastic Properties of Normal and Atherosclerotic Carotid Arteries. Eur J Vasc Endovasc Surg. 2000; 19(3): 221-5. https://doi.org/10.1053/ejvs.1999.1008 DOI: https://doi.org/10.1053/ejvs.1999.1008
Belz G. Elastic Properties and Windkessel Function of the Human Aorta. Cardiovasc Drugs Ther. 1995; 9(1): 73-86). https://doi.org/10.1007/BF00877747 DOI: https://doi.org/10.1007/BF00877747
Tsuchikura S, Shoji T, Kimoto E, Shinohara K, Hatsuda S, Koyama H, et al. Central Versus Peripheral Arterial Stiffness in Association With Coronary, Cerebral and Peripheral Arterial Disease. Atherosclerosis. 2010; 211(2): 480-5. https://doi.org/10.1016/j.atherosclerosis.2010.03.037 DOI: https://doi.org/10.1016/j.atherosclerosis.2010.03.037
Hope K, Zachariah J. Predictors and Consequences of Pediatric Hypertension: Have Advanced Echocardiography and Vascular Testing Arrived? Curr Hypertens Rep. 2019; 21(7): 54. https://doi.org/10.1007/s11906-019-0958-3 DOI: https://doi.org/10.1007/s11906-019-0958-3
Ozcetin M, Celikyay Z, Celik A, Yilmaz R, Yerli Y, Erkorkmaz U. The Importance of Carotid Artery Stiffness and Increased Intima-Media Thickness in Obese Children. S Afr Med J. 2012; 102(5): 295-9. https://doi.org/10.7196/SAMJ.5351 DOI: https://doi.org/10.7196/SAMJ.5351
Iannuzzi A, Licenziati M, Acampora C, Salvatore V, Auriemma L, Romano M, et al. Increased Carotid Intima- Media Thickness and Stiffness in Obese Children. Diabetes care. 2004; 27(10): 2506-8. https://doi.org/10.2337/diacare.27.10.2506 DOI: https://doi.org/10.2337/diacare.27.10.2506
Stoner L, Kucharska-Newton A, Meyer M. Cardiometabolic Health and Carotid-Femoral Pulse Wave Velocity in Children: A Systematic Review and Meta-Regression. J Pediatr. 2020; 218: 98-105.e.3. https://doi.org/10.1016/j.jpeds.2019.10.065 DOI: https://doi.org/10.1016/j.jpeds.2019.10.065
Lundberg J, Weitzberg E, Gladwin M. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008; 7(2): 156-67. https://doi.org/10.1038/nrd2466 DOI: https://doi.org/10.1038/nrd2466
Toda N, Okamura T. Obesity impairs vasodilatation and blood flow increase mediated by endothelial nitric oxide: an overview. J Clin Pharmacol. 2013; 53(12): 1228-39. https://doi.org/10.1002/jcph.179 DOI: https://doi.org/10.1002/jcph.179
Tain YL, Hsu CN. Toxic Dimethylarginines: Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA). Toxins (Basel). 2017; 9(3): 92. DOI: https://doi.org/10.3390/toxins9030092
Czumaj A, Śledzińska M, Brzeziński M, Szlagatys- Sidorkiewicz A, Słomińska E, Śledziński T. Decreased serum level of nitric oxide in children with excessive body weight. Adv Clin Exp Med. 2019; 28(4): 439-446. https://doi.org/10.17219/acem/77982 DOI: https://doi.org/10.17219/acem/77982
Lorenz M, Markus H, Bots M, Rosvall M, Sitzer M. Prediction of Clinical Cardiovascular Events With Carotid Intima-Media Thickness: A Systematic Review and Meta-Analysis. Circulation. 2007; 115(4): 459-67. https://doi.org/10.1161/CIRCULATIONAHA.106.628875 DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.628875
Juonala M, Magnussen C, Venn A, Dwyer T, Burns T, Davis P, et al. Influence of age on associations between childhood risk factors and carotid intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study, the Childhood Determinants of Adult Health Study, the Bogalusa Heart Study, and the Muscatine Study for the International Childhood Cardiovascular Cohort (i3C) Consortium. Circulation. 2010; 122(24): 2514-20 https://doi.org/10.1161/CIRCULATIONAHA.110.966465 DOI: https://doi.org/10.1161/CIRCULATIONAHA.110.966465
Lamotte C, Iliescu C, Libersa C, Gottrand F. Increased intima-media thickness of the carotid artery in childhood: a systematic review of observational studies. Eur J Pediatr. 2010; 170(6): 719-29. https://doi.org/10.1007/s00431-010-1328-y DOI: https://doi.org/10.1007/s00431-010-1328-y
Lamotte C, Iliescu C, Beghin L, Salleron J, Gonzalez-Gross M, Marcos A, et al. Association of socioeconomic status, truncal fat and sICAM-1 with carotid intima-media thickness in adolescents: the HELENA study. Atherosclerosis. 2013; 228(2): 460-5. https://doi.org/10.1016/j.atherosclerosis.2013.03.007 DOI: https://doi.org/10.1016/j.atherosclerosis.2013.03.007
López-Bermejo A, Prats-Puig A, Osiniri I, Martínez- Calcerrada J, Bassols J. Perirenal and Epicardial Fat and Their Association With Carotid Intima-Media Thickness in Children. Ann Pediatr Endocrinol Metab. 2019; 24(4): 220- 225. https://doi.org/10.6065/apem.2019.24.4.220 DOI: https://doi.org/10.6065/apem.2019.24.4.220
Asghari G, Dehghan P, Mirmiran P, Yuzbashian E, Mahdavi M, Tohidi M, et al. Insulin metabolism markers are predictors of subclinical atherosclerosis among overweight and obese children and adolescents. BMC pediatrics. 2018; 18(1): 368. https://doi.org/10.1186/s12887-018-1347-9 DOI: https://doi.org/10.1186/s12887-018-1347-9
Day T, Park M, Kinra S. The association between blood pressure and carotid intima-media thickness in children: a systematic review. Cardiol Young. 2017; 27(7): 1295-1305. https://doi.org/10.1017/S1047951117000105 DOI: https://doi.org/10.1017/S1047951117000105
Sanchez A, Barth J, Zhang L. The carotid artery wall thickness in teenagers is related to their diet and the typical risk factors of heart disease among adults. Atherosclerosis. 2000; 152(1): 265-6. https://doi.org/10.1016/S0021-9150(00)00532-3 DOI: https://doi.org/10.1016/S0021-9150(00)00532-3
Urbina EM. Abnormalities of vascular structure and function in pediatric hypertension. Pediatr Nephrol. 2016; 31(7): 1061- 70. https://doi.org/10.1007/s00467-015-3188-1 DOI: https://doi.org/10.1007/s00467-015-3188-1
Lande M, Carson N, Roy J, Meagher C. Effects of childhood primary hypertension on carotid intima media thickness: a matched controlled study. Hypertension. 2006; 48(1): 40-4. https://doi.org/10.1161/01.HYP.0000227029.10536.e8 DOI: https://doi.org/10.1161/01.HYP.0000227029.10536.e8
Lee SH, Kim JH, Kang MJ, Lee YA, Won Yang S, Shin CH. Implications of Nocturnal Hypertension in Children and Adolescents With Type 1 Diabetes. Diabetes Care. 2011; 34(10): 2180-5. https://doi.org/10.2337/dc11-0830 DOI: https://doi.org/10.2337/dc11-0830
Sorof J, Alexandrov A, Cardwell G, Portman R. Carotid artery intimal-medial thickness and left ventricular hypertrophy in children with elevated blood pressure. Pediatrics. 2003; 111(1): 61-6. https://doi.org/10.1542/peds.111.1.61 DOI: https://doi.org/10.1542/peds.111.1.61
Páll D, Juhász M, Lengyel S, Molnár C, Paragh G, Fülesdi B, et al. Assessment of target-organ damage in adolescent white-coat and sustained hypertensives. J Hypertens. 2010; 28(10): 2139-44. https://doi.org/10.1097/HJH.0b013e32833cd2da DOI: https://doi.org/10.1097/HJH.0b013e32833cd2da
Paton J, Boscan P, Pickering A, Nalivaiko E. The Yin and Yang of Cardiac Autonomic Control: Vago-Sympathetic Interactions Revisited. Brain Res Brain Res Rev 2005; 49(3): 555-65. https://doi.org/10.1016/j.brainresrev.2005.02.005 DOI: https://doi.org/10.1016/j.brainresrev.2005.02.005
Liao D, Rodriguez-Colon SM, He F, Bixler EO. Childhood Obesity and autonomic dysfunction: Risk for cardiac morbidity and mortality. Curr Treat Options Cardiovasc Med. 2014; 16(10): 342. https://doi.org/10.1007/s11936-014-0342-1 DOI: https://doi.org/10.1007/s11936-014-0342-1
Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996; 93(5): 1043-65.
Otzenberger H, Gronfier C, Simon C, Charloux A, Ehrhart J, Piquard F, et al. Dynamic heart rate variability: a tool for exploring sympathovagal balance continuously during sleep in men. Am J Physiol. 1998; 275(3): H946-50. https://doi.org/10.1152/ajpheart.1998.275.3.H946 DOI: https://doi.org/10.1152/ajpheart.1998.275.3.H946
Billman GE. Heart Rate Variability - A Historical Perspective. Front Physiol. 2011; 2: 86. https://doi.org/10.3389/fphys.2011.00086 DOI: https://doi.org/10.3389/fphys.2011.00086
Thayer J, Yamamoto S, Brosschot J. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. 2010; 141(2): 122-31. https://doi.org/10.1016/j.ijcard.2009.09.543 DOI: https://doi.org/10.1016/j.ijcard.2009.09.543
Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991; 84(2): 482-92. https://doi.org/10.1161/01.CIR.84.2.482 DOI: https://doi.org/10.1161/01.CIR.84.2.482
Cote A, Harris K, Panagiotopoulos C, Sandor G, Devlin A. Childhood Obesity and Cardiovascular Dysfunction. J Am Coll Cardiol. 2013; 62(15): 1309-19. https://doi.org/10.1016/j.jacc.2013.07.042 DOI: https://doi.org/10.1016/j.jacc.2013.07.042
McCrindle B. Cardiovascular consequences of childhood obesity. Can J Cardiol. 2015; 31(2): 124-30. https://doi.org/10.1016/j.cjca.2014.08.017 DOI: https://doi.org/10.1016/j.cjca.2014.08.017
Rodríguez-Colón S, Bixler E, Li X, Vgontzas A, Liao D. Obesity is associated with impaired cardiac autonomic modulation in children. Int J Pediatr Obes. 2011; 6(2): 128- 34. https://doi.org/10.3109/17477166.2010.490265 DOI: https://doi.org/10.3109/17477166.2010.490265
Taşçılar M, Yokuşoğlu M, Boyraz M, Baysan O, Köz C, DündaroÅNz R. Cardiac autonomic functions in obese children. J Clin Res Pediatr Endocrinol. 2011; 3(2): 60-4 https://doi.org/10.4274/jcrpe.v3i2.13 DOI: https://doi.org/10.4274/jcrpe.v3i2.131
Soares-Miranda L, Alves A, Vale S, Aires L, Santos R, Oliveira J, et al. Central fat influences cardiac autonomic function in obese and overweight girls. Pediatr Cardiol. 2011; 32(7): 924-8. https://doi.org/10.1007/s00246-011-0015-8 DOI: https://doi.org/10.1007/s00246-011-0015-8
Rabbone I, Bobbio A, Rabbia F, Bertello M, Ignaccoldo M, Saglio E, et al. Early cardiovascular autonomic dysfunction, beta cell function and insulin resistance in obese adolescents. Acta Biomed. 2009; 80(1): 29-35.
Kaufman C, Kaiser D, Steinberger J, Dengel D. Relationships between heart rate variability, vascular function, and adiposity in children. Clin Auton Res. 2007; 17(3): 165-71. https://doi.org/10.1007/s10286-007-0411-6 DOI: https://doi.org/10.1007/s10286-007-0411-6
Paschoal M, Trevizan P, Scodeler N. Heart rate variability, blood lipids and physical capacity of obese and non-obese children. Arq Bras Cardiol. 2009; 93(3): 239-46. https://doi.org/10.1590/S0066-782X2009000900007 DOI: https://doi.org/10.1590/S0066-782X2009000900007
Dangardt F, Volkmann R, Chen Y, Osika W, Mårild S, Friberg P. Reduced cardiac vagal activity in obese children and adolescents. Clin Physiol Funct Imaging. 2011; 31(2): 108- 13. https://doi.org/10.1111/j.1475-097X.2010.00985.x DOI: https://doi.org/10.1111/j.1475-097X.2010.00985.x
Latchman P, Mathur M, Bartels M, Axtell R, De Meersman R. Impaired autonomic function in normotensive obese children. Clin Auton Res. 2011; 21(5): 319-23. https://doi.org/10.1007/s10286-011-0116-8 DOI: https://doi.org/10.1007/s10286-011-0116-8
Lucini D, de Giacomi G, Tosi F, Malacarne M, Respizzi S, Pagani M. Altered cardiovascular autonomic regulation in overweight children engaged in regular physical activity. Heart. 2013; 99(6): 376-81. https://doi.org/10.1136/heartjnl-2012-302616 DOI: https://doi.org/10.1136/heartjnl-2012-302616
Faulkner M, Hathaway D, Tolley B. Cardiovascular autonomic function in healthy adolescents. Heart Lung. 2003; 32(1): 10-22. https://doi.org/10.1067/mhl.2003.6 DOI: https://doi.org/10.1067/mhl.2003.6
Soares-Miranda L, Sandercock G, Vale S, Santos R, Abreu S, Moreira C, et al. Metabolic Syndrome, Physical Activity and Cardiac Autonomic Function. Diabetes Metab Res Rev. 2012; 28(4): 363-9. https://doi.org/10.1002/dmrr.2281 DOI: https://doi.org/10.1002/dmrr.2281
Xie GL, Wang J, Zhou Y, Xu H, Sun JH, Yang SR. Association of High Blood Pressure with Heart Rate Variability in Children. Iran J Pediatr. 2013; 23(1): 37-44.
Popkin BM, Du S, Green WD, Beck MA, Algaith T, Herbst CH, et al. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes Rev. 2020; 21(11): e13128. https://doi.org/10.1111/obr.13128 DOI: https://doi.org/10.1111/obr.13128