Peptide Sharing between Parvovirus B19 and DNA Methylating/ Histone Modifying Enzymes. A Potential Link to Childhood Acute Lymphoblastic Leukemia

Authors

  • Anna Polito Complex Structure of Neuropsychiatry Childhood-Adolescence, Ospedali Riuniti of Foggia, Foggia, Italy
  • Riccardo Polimeno Section of Sciences and Technologies of Laboratory Medicine, Department of Interdisciplinary Medicine, University of Bari, Bari, Italy
  • Darja Kanduc Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy

DOI:

https://doi.org/10.12974/2311-8687.2017.05.01.4

Keywords:

Peptide sharing, immune crossreactivity, DNA methyl transferases, histone methyl (acetyl) ltransferases, aberrant gene expression.

Abstract

The present study investigates the hypothesis that the immune responses that follow active infections may crossreact with (and damage) molecules related to DNA methylation and histone modification, in this way determining the aberrant gene expression so often reported in acute lymphoblastic leukemia (ALL). We used Parvovirus B19 - a pathogen that has been repeatedly studied in ALL – as a model and analysed the viral polyprotein for peptide sharing with human proteins involved in gene expression. Data are reported that document an ample peptide sharing between Parvovirus B19 and human DNA/histone methylation and modification enzymes. Remarkably, the shared peptide platform is endowed with a high immunologic potential. This study calls attention on immune cross reactivity as a molecular mechanism that may connect infections to cancer and warns against active immunizations based on entire viral antigens. 

References

Stiller CA and Parkin DM. Geographic and ethnic variations in the incidence of childhood cancer. Br Med Bull 1996; 52: 682-703. https://doi.org/10.1093/oxfordjournals.bmb.a011577 DOI: https://doi.org/10.1093/oxfordjournals.bmb.a011577

Siegel RL, Miller KD and Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017; 67: 7-30. https://doi.org/10.3322/caac.21387 DOI: https://doi.org/10.3322/caac.21387

Mullighan CG. Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin Invest 2012; 122: 3407-15. https://doi.org/10.1172/JCI61203 DOI: https://doi.org/10.1172/JCI61203

Denk D, Nebral K, Bradtke J, et al. PAX5-AUTS2: a recurrent fusion gene in childhood B-cell precursor acute lymphoblastic leukemia. Leuk Res 2012; 36: e178-81. https://doi.org/10.1016/j.leukres.2012.04.015 DOI: https://doi.org/10.1016/j.leukres.2012.04.015

Sanjuan-Pla A, Bueno C, Prieto C, et al. Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia. Blood 2015; 126: 2676-85. https://doi.org/10.1182/blood-2015-09-667378 DOI: https://doi.org/10.1182/blood-2015-09-667378

Dupain C, Harttrampf AC, Urbinati G, Geoerger B and Massaad-Massade L. Relevance of fusion genes in pediatric cancers: toward precision medicine. Mol Ther Nucleic Acids 2017; 6: 315-26. https://doi.org/10.1016/j.omtn.2017.01.005 DOI: https://doi.org/10.1016/j.omtn.2017.01.005

Loghavi S, Kutok JL and Jorgensen JL. B-acute lymphoblastic leukemia/lymphoblastic lymphoma. Am J Clin Pathol 2015; 144: 393-410. https://doi.org/10.1309/AJCPAN7BH5DNYWZB DOI: https://doi.org/10.1309/AJCPAN7BH5DNYWZB

Jan M and Majeti R. Clonal evolution of acute leukemia genomes. Oncogene 2013; 32: 135-40. https://doi.org/10.1038/onc.2012.48 DOI: https://doi.org/10.1038/onc.2012.48

Swaminathan S, Klemm L, Park E, et al. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nat Immunol 2015; 16: 766-74. https://doi.org/10.1038/ni.3160 DOI: https://doi.org/10.1038/ni.3160

Roumier C, Fenaux P, Lafage M, Imbert M, Eclache V, et al. New mechanisms of AML1 gene alteration in hematological malignancies. Leukemia 2003; 17: 9-16. https://doi.org/10.1038/sj.leu.2402766 DOI: https://doi.org/10.1038/sj.leu.2402766

McLeod HL, Krynetski EY, Relling MV and Evans WE. Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 2000; 14: 567-72. https://doi.org/10.1038/sj.leu.2401723 DOI: https://doi.org/10.1038/sj.leu.2401723

Zhang J, Mullighan CG, Harvey RC, et al. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 2011; 118: 3080-7. https://doi.org/10.1182/blood-2011-03-341412 DOI: https://doi.org/10.1182/blood-2011-03-341412

Koch U and Radtke F. Notch in T-ALL: new players in a complex disease. Trends Immunol 2011; 32: 434-42. https://doi.org/10.1016/j.it.2011.06.005 DOI: https://doi.org/10.1016/j.it.2011.06.005

Cullen SM, Mayle A, Rossi L and Goodell MA. Hematopoietic stem cell development: An epigenetic journey. Curr Top Dev Biol 2014; 107: 39-75. https://doi.org/10.1016/B978-0-12-416022-4.00002-0 DOI: https://doi.org/10.1016/B978-0-12-416022-4.00002-0

Van der Meulen J, Van Roy N, Van Vlierberghe P and Speleman F. The epigenetic landscape of T-cell acute lymphoblastic leukemia. Int J Biochem Cell Biol 2014; 53: 547-57. https://doi.org/10.1016/j.biocel.2014.04.015 DOI: https://doi.org/10.1016/j.biocel.2014.04.015

Bao Y and Cao X. Epigenetic control of B cell development and B-cell-related immune disorders. Clin Rev Allergy Immunol 2016; 50: 301-11. https://doi.org/10.1007/s12016-015-8494-7 DOI: https://doi.org/10.1007/s12016-015-8494-7

Karrman K and Johansson B. Pediatric T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2017; 56: 89-116. https://doi.org/10.1002/gcc.22416 DOI: https://doi.org/10.1002/gcc.22416

Burke MJ and Bhatla T. Epigenetic modifications in pediatric acute lymphoblastic leukemia. Front Pediatr 2014; 2: 42. https://doi.org/10.3389/fped.2014.00042 DOI: https://doi.org/10.3389/fped.2014.00042

Bergmann AK, Castellano G, Alten J, et al. DNA methylation profiling of pediatric B-cell lymphoblastic leukemia with KMT2A rearrangement identifies hypomethylation at enhancer sites. Pediatr Blood Cancer 2017; 64(3). DOI: 10.1002/pbc.26251 https://doi.org/10.1002/pbc.26251 DOI: https://doi.org/10.1002/pbc.26251

Uyen TN, Sakashita K, Al-Kzayer LF, Nakazawa Y, Kurata T, et al. Aberrant methylation of protocadherin 17 and its prognostic value in pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 2017; 64(3). DOI: 10.1002/pbc.26259. https://doi.org/10.1002/pbc.26259 DOI: https://doi.org/10.1002/pbc.26259

Hatırnaz Ng Ö, Fırtına S, Can İ, et al. A possible role for WNT5A hypermethylation in pediatric acute lymphoblastic leukemia. Turk J Haematol 2015; 32: 127-35. https://doi.org/10.4274/Tjh.2013.0296 DOI: https://doi.org/10.4274/Tjh.2013.0296

Almamun M, Kholod O, Stuckel AJ, et al. Inferring a role for methylation of intergenic DNA in the regulation of genes aberrantly expressed in precursor B-cell acute lymphoblastic leukemia. Leuk Lymphoma 2017; 58: 1-12. https://doi.org/10.1080/10428194.2016.1272683 DOI: https://doi.org/10.1080/10428194.2016.1272683

Yang W and Ernst P. Distinct functions of histone H3, lysine 4 methyltransferases in normal and malignant hematopoiesis. Curr Opin Hematol 2017; 24: 322-8. https://doi.org/10.1097/MOH.0000000000000346 DOI: https://doi.org/10.1097/MOH.0000000000000346

Greenblatt SM, Liu F and Nimer SD. Arginine methyltransferases in normal and malignant hematopoiesis. Exp Hematol 2016; 44: 435-41. https://doi.org/10.1016/j.exphem.2016.03.009 DOI: https://doi.org/10.1016/j.exphem.2016.03.009

Janczar S, Janczar K, Pastorczak A, et al. The role of histone protein modifications and mutations in histone modifiers in pediatric b-cell progenitor acute lymphoblastic leukemia. Cancers (Basel) 2017; 9(1). pii: E2 https://doi.org/10.3390/cancers9010002 DOI: https://doi.org/10.3390/cancers9010002

Li X, Liu J, Zhou R, Huang S, Huang S, et al. Gene silencing of MIR22 in acute lymphoblastic leukaemia involves histone modifications independent of promoter DNA methylation. Br J Haematol 2010; 148: 69-79. https://doi.org/10.1111/j.1365-2141.2009.07920.x DOI: https://doi.org/10.1111/j.1365-2141.2009.07920.x

Zhang C, Zhong JF, Stucky A, Chen XL, Press MF, et al. Histone acetylation: novel target for the treatment of acute lymphoblastic leukemia. Clin Epigenetics 2015; 7: 117. https://doi.org/10.1186/s13148-015-0151-8 DOI: https://doi.org/10.1186/s13148-015-0151-8

Alibek K, Mussabekova A, Kakpenova A, et al. Childhood cancers: what is a possible role of infectious agents? Infect Agent Cancer 2013; 8: 48. https://doi.org/10.1186/1750-9378-8-48 DOI: https://doi.org/10.1186/1750-9378-8-48

Chang VY and Davidson TB. Childhood exposures and risk of malignancy in adulthood. Pediatr Ann 2015; 44: e270-3. https://doi.org/10.3928/00904481-20151112-10 DOI: https://doi.org/10.3928/00904481-20151112-10

Greaves M and Müschen M. Infection and the perils of B-cell activation. Cancer Discov 2015; 5: 1244-6. https://doi.org/10.1158/2159-8290.CD-15-1243 DOI: https://doi.org/10.1158/2159-8290.CD-15-1243

Bürgler S and Nadal D. Pediatric precursor B acute lymphoblastic leukemia: are T helper cells the missing link in the infectious etiology theory? Mol Cell Pediatr 2017; 4: 6. https://doi.org/10.1186/s40348-017-0072-z DOI: https://doi.org/10.1186/s40348-017-0072-z

Hauer J, Martín-Lorenzo A and Sánchez-García I. Infection causes childhood leukemia. Aging (Albany NY) 2015; 7: 607-8. https://doi.org/10.18632/aging.100815 DOI: https://doi.org/10.18632/aging.100815

Martín-Lorenzo A, Hauer J, Vicente-Due-as C, et al. Infection exposure is a causal factor in B-cell precursor acute lymphoblastic leukemia as a result of Pax5-inherited susceptibility. Cancer Discov 2015; 5: 1328-43. https://doi.org/10.1158/2159-8290.CD-15-0892 DOI: https://doi.org/10.1158/2159-8290.CD-15-0892

Smith M. Considerations on a possible viral etiology for Bprecursor acute lymphoblastic leukemia of childhood. J Immunother 1997; 20: 89-100. https://doi.org/10.1097/00002371-199703000-00001 DOI: https://doi.org/10.1097/00002371-199703000-00001

Spector LG. Enterovirus infection and childhood leukaemia: an association? Lancet Oncol 2015; 16: 1278-9. https://doi.org/10.1016/S1470-2045(15)00194-1 DOI: https://doi.org/10.1016/S1470-2045(15)00194-1

Kinlen LJ and Balkwill A. Infective cause of childhood leukaemia and wartime population mixing in Orkney and Shetland, UK. Lancet 2001; 357: 858 https://doi.org/10.1016/S0140-6736(00)04208-2 DOI: https://doi.org/10.1016/S0140-6736(00)04208-2

Birch JM, Alexander FE, Blair V, Eden OB, Taylor GM, et al. Space-time clustering patterns in childhood leukaemia support a role for infection. Br J Cancer 2000; 82(9): 1571-6.

McNally RJ and Eden TO. An infectious aetiology for childhood acute leukaemia: a review of the evidence. Br J Haematol 2004; 127: 243-63. https://doi.org/10.1111/j.1365-2141.2004.05166.x DOI: https://doi.org/10.1111/j.1365-2141.2004.05166.x

Heath CW Jr. Community clusters of childhood leukemia and lymphoma: evidence of infection? Am J Epidemiol 2005; 162: 817-22. https://doi.org/10.1093/aje/kwi289 DOI: https://doi.org/10.1093/aje/kwi289

MacArthur AC, McBride ML, Spinelli JJ, Tamaro S, Gallagher RP, et al. Risk of childhood leukemia associated with vaccination, infection, and medication use in childhood: the Cross-Canada Childhood Leukemia Study. Am J Epidemiol 2008; 167: 598-606. https://doi.org/10.1093/aje/kwm339 DOI: https://doi.org/10.1093/aje/kwm339

McNally RJ, Alexander FE, Vincent TJ and Murphy MF. Spatial clustering of childhood cancer in Great Britain during the period 1969-1993. Int J Cancer 2009; 124: 932-6. https://doi.org/10.1002/ijc.23965 DOI: https://doi.org/10.1002/ijc.23965

Afzal S, Ethier MC, Dupuis LL, et al. Risk factors for infection-related outcomes during induction therapy for childhood acute lymphoblastic leukemia. Pediatr Infect Dis J 2009; 28: 1064-8. https://doi.org/10.1097/INF.0b013e3181aa6eae DOI: https://doi.org/10.1097/INF.0b013e3181aa6eae

Ma X, Urayama K, Chang J, Wiemels JL and Buffler PA. Infection and pediatric acute lymphoblastic leukemia. Blood Cells Mol Dis 2009; 42: 117-20. https://doi.org/10.1016/j.bcmd.2008.10.006 DOI: https://doi.org/10.1016/j.bcmd.2008.10.006

Eden T. Aetiology of childhood leukaemia. Cancer Treat Rev 2010; 36: 286-97. https://doi.org/10.1016/j.ctrv.2010.02.004 DOI: https://doi.org/10.1016/j.ctrv.2010.02.004

O'Connor SM and Boneva RS. Infectious etiologies of childhood leukemia: plausibility and challenges to proof. Environ Health Perspect 2007; 115: 146-50. https://doi.org/10.1289/ehp.9024 DOI: https://doi.org/10.1289/ehp.9024

Kanduc D, Stufano A, Lucchese G and Kusalik A. Massive peptide sharing between viral and human proteomes. Peptides 2008; 29: 1755-66. https://doi.org/10.1016/j.peptides.2008.05.022 DOI: https://doi.org/10.1016/j.peptides.2008.05.022

Lucchese G, Capone G and Kanduc D. Peptide sharing between influenza A H1N1 hemagglutinin and human axon guidance proteins. Schizophr Bull 2014; 40: 362-75. https://doi.org/10.1093/schbul/sbs197 DOI: https://doi.org/10.1093/schbul/sbs197

Lucchese G and Kanduc D. Single amino acid repeats connect viruses to neurodegeneration. Curr Drug Discov Technol 2014; 11: 214-9. https://doi.org/10.2174/1570163811666140212112300 DOI: https://doi.org/10.2174/1570163811666140212112300

Lucchese G and Kanduc D. Zika virus and autoimmunity: From microcephaly to Guillain-Barré syndrome, and beyond. Autoimmun Rev 2016; 15: 801-8. https://doi.org/10.1016/j.autrev.2016.03.020 DOI: https://doi.org/10.1016/j.autrev.2016.03.020

Lucchese G and Kanduc D. Potential crossreactivity of human immune responses against HCMV glycoprotein B. Curr Drug Discov Technol 2016; 13(1): 16-24. https://doi.org/10.2174/1568009616666160129100621 DOI: https://doi.org/10.2174/1568009616666160129100621

Lee SM, Kim DG and Bang D. Persistent erythema infectiosum-like rash as a prodrome of acute lymphocytic leukemia. Pediatr Dermatol 1994; 11(2): 156-9. https://doi.org/10.1111/j.1525-1470.1994.tb00571.x DOI: https://doi.org/10.1111/j.1525-1470.1994.tb00571.x

Petrella T, Bailly F, Mugneret F, et al. Bone marrow necrosis and human parvovirus associated infection preceding an Ph1+ acute lymphoblastic leukemia. Leuk Lymphoma 1992; 8: 415-9. https://doi.org/10.3109/10428199209051023 DOI: https://doi.org/10.3109/10428199209051023

Broliden K, Tolfvenstam T, Ohlsson S and Henter JI. Persistent B19 parvovirus infection in pediatric malignancies. Med Pediatr Oncol 1998; 31: 66-72. https://doi.org/10.1002/(SICI)1096- 911X(199808)31:2<66::AID-MPO4>3.0.CO;2-X DOI: https://doi.org/10.1002/(SICI)1096-911X(199808)31:2<66::AID-MPO4>3.0.CO;2-X

Kerr JR, Barah F, Cunniffe VS, et al. Association of acute parvovirus B19 infection with new onset of acute lymphoblastic and myeloblastic leukaemia. J Clin Pathol 2003; 56: 873-5. https://doi.org/10.1136/jcp.56.11.873 DOI: https://doi.org/10.1136/jcp.56.11.873

Fattet S, Cassinotti P and Popovic MB. Persistent human parvovirus B19 infection in children under maintenance chemotherapy for acute lymphocytic leukemia. J Pediatr Hematol Oncol 2004; 26: 497-503. https://doi.org/10.1097/01.mph.0000134463.09543.99 DOI: https://doi.org/10.1097/01.mph.0000134463.09543.99

Savaşan S and Ozdemir O. Parvovirus B19 infection and acute lymphoblastic leukaemia. Br J Haematol 2003; 120: 168-9. https://doi.org/10.1046/j.1365-2141.2003.03983_3.x DOI: https://doi.org/10.1046/j.1365-2141.2003.03983_3.x

da Conceição Nunes J, de Araujo GV, Viana MT and Sarinho ES. Association of atopic diseases and parvovirus B19 with acute lymphoblastic leukemia in childhood and adolescence in the northeast of Brazil. Int J Clin Oncol 2016; 21: 989-95. https://doi.org/10.1007/s10147-016-0988-7 DOI: https://doi.org/10.1007/s10147-016-0988-7

Vasconcelos GM, Christensen BC, Houseman EA, et al. History of Parvovirus B19 infection is associated with a DNA methylation signature in childhood acute lymphoblastic leukemia. Epigenetics 2011; 6: 1436-43. https://doi.org/10.4161/epi.6.12.18464 DOI: https://doi.org/10.4161/epi.6.12.18464

Kerr JR and Mattey DL. The role of parvovirus B19 and the immune response in the pathogenesis of acute leukemia. Rev Med Virol 2015; 25: 133-55. https://doi.org/10.1002/rmv.1830 DOI: https://doi.org/10.1002/rmv.1830

Kerr JR. The role of parvovirus B19 in the pathogenesis of autoimmunity and autoimmune disease. J Clin Pathol. 2016 Apr; 69(4): 279-91. https://doi.org/10.1136/jclinpath-2015-203455 DOI: https://doi.org/10.1136/jclinpath-2015-203455

The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017; 45: D158-D169. https://doi.org/10.1093/nar/gkw1099 DOI: https://doi.org/10.1093/nar/gkw1099

Vita R, Overton JA, Greenbaum JA, et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res 2015; 43: D405-412. https://doi.org/10.1093/nar/gku938 DOI: https://doi.org/10.1093/nar/gku938

Frank A. Immunology and Evolution of Infectious Disease. Princeton (NJ): Princeton University Press. 2002.

Zeng W, Pagnon J and Jackson DC. The C-terminal pentapeptide of LHRH is a dominant B cell epitope with antigenic and biological function. Mol Immunol 2007; 44: 3724-31. https://doi.org/10.1016/j.molimm.2007.04.004 DOI: https://doi.org/10.1016/j.molimm.2007.04.004

Kanduc D. Pentapeptides as minimal functional units in cell biology and immunology. Curr Protein Pept Sci 2013; 14: 111-20. https://doi.org/10.2174/1389203711314020003 DOI: https://doi.org/10.2174/1389203711314020003

Kanduc D. Protein information content resides in rare peptide segments. Peptides 2010; 31: 983–8. https://doi.org/10.1016/j.peptides.2010.02.003 DOI: https://doi.org/10.1016/j.peptides.2010.02.003

Kanduc D. Homology, similarity, and identity in peptide epitope immunodefinition. J Pept Sci 2012; 18: 487–94. https://doi.org/10.1002/psc.2419 DOI: https://doi.org/10.1002/psc.2419

Lucchese G, Calabrò M and Kanduc D. Circumscribing the conformational peptide epitope landscape. Curr Pharm Des 2012; 18: 832-9. https://doi.org/10.2174/138161212799277635 DOI: https://doi.org/10.2174/138161212799277635

Marcotte EL, Ritz B, Cockburn M, Yu F and Heck JE. Exposure to infections and risk of leukemia in young children. Cancer Epidemiol Biomarkers Prev 2014; 23: 1195-203. https://doi.org/10.1158/1055-9965.EPI-13-1330 DOI: https://doi.org/10.1158/1055-9965.EPI-13-1330

Chandramouli S, Medina-Selby A, Coit D, Schaefer M and Spencer T. Generation of a parvovirus B19 vaccine candidate. Vaccine 2013; 31: 3872-8. https://doi.org/10.1016/j.vaccine.2013.06.062 DOI: https://doi.org/10.1016/j.vaccine.2013.06.062

Fasano C and Kanduc D. Selfness-nonselfness in designing an anti-B19 erythrovirus vaccine. Self Nonself 2011: 2, 114–9. https://doi.org/10.4161/self.2.2.16190 DOI: https://doi.org/10.4161/self.2.2.16190

Lucchese G, Stufano A and Kanduc D. Searching for an effective, safe and universal anti-HIV vaccine: Finding the answer in just one short peptide. Self Nonself 2011; 2: 49-54. https://doi.org/10.4161/self.2.1.14762 DOI: https://doi.org/10.4161/self.2.1.14762

Kanduc D. Epitopic peptides with low similarity to the host proteome: towards biological therapies without side effects. Expert Opin Biol Ther 2009; 9: 45-53. https://doi.org/10.1517/14712590802614041 DOI: https://doi.org/10.1517/14712590802614041

Kanduc D. Peptide cross-reactivity: the original sin of vaccines. Front Biosci 2012; 4: 1393-401. https://doi.org/10.2741/s341 DOI: https://doi.org/10.2741/s341

Kanduc D. Immunogenicity, immunopathogenicity, and immunotolerance in one graph. Anticancer Agents Med Chem 2015; 15: 1264-8. https://doi.org/10.2174/1871520615666150716105543 DOI: https://doi.org/10.2174/1871520615666150716105543

https://www.cdc.gov/parvovirusb19/fifth-disease.htm

Downloads

Published

2017-02-27

How to Cite

Polito, A., Polimeno, R., & Kanduc, D. (2017). Peptide Sharing between Parvovirus B19 and DNA Methylating/ Histone Modifying Enzymes. A Potential Link to Childhood Acute Lymphoblastic Leukemia. International Journal of Pediatrics and Child Health, 5, 29–39. https://doi.org/10.12974/2311-8687.2017.05.01.4

Issue

Section

Articles