Respiratory Follow-up in a Cohort of Children with Congenital Malformations Affecting Lung Development: A Cohort Study

Authors

  • Nicole Mussi Respiratory unit, Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Parma, Italy
  • Erika Maugeri Respiratory unit, Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Parma, Italy
  • Michela Deolmi Respiratory unit, Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Parma, Italy
  • Alberto Scarpa Pediatric Surgery Unit, Pietro Barilla Children's Parma Hospital, Parma, Italy
  • Emilio Casolari Pediatric Surgery Unit, Pietro Barilla Children's Parma Hospital, Parma, Italy
  • Giovanna Pisi Respiratory unit, Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Parma, Italy
  • Valentina Fainardi Respiratory unit, Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Parma, Italy
  • Susanna Esposito Respiratory unit, Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Parma, Italy

DOI:

https://doi.org/10.12974/2311-8687.2024.12.11

Keywords:

Congenital malformation, Lung, Children, Respiratory infection, Lung development, Follow-up, Multidisciplinary, Oesophageal atresia, CPAM

Abstract

Background; Congenital malformations like oesophageal atresia (OA) and tracheo-esophageal fistula (TOF), congenital pulmonary airway malformations (CPAMs), congenital diaphragmatic hernia (CDH) and vascular rings (VRs) can influence lung development and respiratory function with significant impact on individuals, families, and health care system. This observational study outlines our multidisciplinary approach and respiratory follow-up for children with these congenital malformations.

Methods; We collected clinical data of children followed at the Pediatric Respiratory Unit of Parma University Hospital (Italy) between January 2015 and May 2023.

Results; Thirty-five patients have been included. The most common anomalies were AE (n = 12) and CHD (n = 9), followed by CPAMs (n = 9) and VRs (n = 5). In 50% of patients, the diagnosis was made through prenatal ultrasound, particularly in almost all patients with CPAMs (88.8%) and CDH (77.7%), contrary to OE, diagnosed postnatally in the majority of patients (83%). Children underwent their first respiratory visit at an average age of 2.5 years, follow-up was conducted on average every 6 months. More than half of patients (54%) was hospitalized for lower respiratory tract infections, particularly those with OA and those aged <3 years. Eight out of the 16 children capable of performing spirometry showed abnormalities in lung function.

Conclusions; Children with congenital malformations are at risk of short and long-term respiratory complications. A personalized follow-up with close collaboration between pediatric pulmonologist, surgeon, neonatologist, physiotherapist is essential to optimize their management and improve their respiratory function.

References

Bergman JEH, Perraud A, Barišić I, Kinsner-Ovaskainen A, Morris JK, Tucker D, et al. Updated EUROCAT guidelines for classification of cases with congenital anomalies. Birth defects research. 2024; 116. https://doi.org/10.1002/bdr2.2314

Pedersen RN, Calzolari E, Husby S, Garne E, EUROCAT Working group. Oesophageal atresia: prevalence, prenatal diagnosis and associated anomalies in 23 European regions. Arch Dis Child. 2012; 97: 227-232. https://doi.org/10.1136/archdischild-2011-300597

Nassar N, Leoncini E, Amar E, Arteaga-Vázquez J, Bakker MK, Bower C, et al. Prevalence of esophageal atresia among 18 international birth defects surveillance programs. Birth Defects Res A Clin Mol Teratol. 2012; 94: 893-899. https://doi.org/10.1002/bdra.23067

Traini I, Menzies J, Hughes J, Leach ST, Krishnan U. Oesophageal atresia: The growth gap. World J Gastroenterol. 2020; 26: 1262-1272. https://doi.org/10.3748/wjg.v26.i12.1262

Spitz L, Kiely EM, Morecroft JA, Drake DP. Oesophageal atresia: at-risk groups for the 1990s. J Pediatr Surg. 1994; 29: 723-725. https://doi.org/10.1016/0022-3468(94)90354-9

Isaacson G. Congenital Anomalies of the Head and Neck. 2007. https://doi.org/10.1016/j.otc.2006.10.012

Sfeir R, Bonnard A, Khen-Dunlop N, Auber F, Gelas T, Michaud L, et al. Esophageal atresia: data from a national cohort. J Pediatr Surg. 2013; 48: 1664-1669. https://doi.org/10.1016/j.jpedsurg.2013.03.075

Sulkowski JP, Cooper JN, Lopez JJ, Jadcherla Y, Cuenot A, Mattei P, et al. Morbidity and mortality in patients with esophageal atresia. Surgery. 2014; 156: 483-491. https://doi.org/10.1016/j.surg.2014.03.016

Cullis PS, Fouad D, Goldstein AM, Wong KKY, Boonthai A, Lobos P, et al. Major surgical conditions of childhood and their lifelong implications: comprehensive review. BJS open. 2024; 8. https://doi.org/10.1093/bjsopen/zrae028

Bogs T, Zwink N, Chonitzki V, Hölscher A, Boemers TM, Münsterer O, et al. Esophageal Atresia with or without Tracheoesophageal Fistula (EA/TEF): Association of Different EA/TEF Subtypes with Specific Co-occurring Congenital Anomalies and Implications for Diagnostic Workup. Eur J Pediatr Surg. 2018; 28. https://doi.org/10.1055/s-0036-1597946

Aly H, Bianco-Batlles D, Mohamed MA, Hammad TA. Mortality in infants with congenital diaphragmatic hernia: a study of the United States National Database. J Perinatol. 2010; 30: 553-557. https://doi.org/10.1038/jp.2009.194

Grivell RM, Andersen C, Dodd JM. Prenatal interventions for congenital diaphragmatic hernia for improving outcomes. Cochrane Database Syst Rev. 2015; 2015: CD008925. https://doi.org/10.1002/14651858.CD008925.pub2

Cannata G, Caporilli C, Grassi F, Perrone S, Esposito S. Management of Congenital Diaphragmatic Hernia (CDH): Role of Molecular Genetics. Int J Mol Sci. 2021; 22. https://doi.org/10.3390/ijms22126353

Mohseni-Bod H, Bohn D. Pulmonary hypertension in congenital diaphragmatic hernia. Semin Pediatr Surg. 2007; 16: 126-133. https://doi.org/10.1053/j.sempedsurg.2007.01.008

Coughlin MA, Werner NL, Gajarski R, Gadepalli S, Hirschl R, Barks J, et al. Prenatally diagnosed severe CDH: mortality and morbidity remain high. J Pediatr Surg. 2016; 51: 1091-1095. https://doi.org/10.1016/j.jpedsurg.2015.10.082

Mehta PA, Sharma G. Congenital Pulmonary Airway Malformation. StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.

Kunisaki SM. Narrative review of congenital lung lesions. Transl Pediatr. 2021; 10: 1418-1431. https://doi.org/10.21037/tp-20-133

Stocker JT. Cystic lung disease in infants and children. Fetal Pediatr Pathol. 2009; 28: 155-184. https://doi.org/10.1080/15513810902984095

Disu EA, Kehinde OA, Anga AL, Ubuane PO, Itiola A, Akinola IJ, et al. Congenital pulmonary airway malformation: A case report of a rare cause of neonatal respiratory distress and review of the literature. Niger J Clin Pract. 2019; 22: 1621-1625. https://doi.org/10.4103/njcp.njcp_20_19

Alshamiri KM, Abbod HB. Congenital cystic adenomatoid malformation. Int J Pediatr Adolesc Med. 2017; 4: 159-160. https://doi.org/10.1016/j.ijpam.2017.12.001

Vascular rings. Semin Pediatr Surg. 2021; 30: 151128. https://doi.org/10.1016/j.sempedsurg.2021.151128

François K, Panzer J, De Groote K, Vandekerckhove K, De Wolf D, De Wilde H, et al. Early and late outcomes after surgical management of congenital vascular rings. Eur J Pediatr. 2017; 176: 371-377. https://doi.org/10.1007/s00431-017-2850-y

Hanneman K, Newman B, Chan F. Congenital Variants and Anomalies of the Aortic Arch. Radiographics. 2016 [cited 13 May 2024]. https://doi.org/10.1148/rg.2017160033

Leblanc C, Baron M, Desselas E, Phan MH, Rybak A, Thouvenin G, et al. Congenital pulmonary airway malformations: state-of-the-art review for pediatrician's use. Eur J Pediatr. 2017; 176: 1559-1571. https://doi.org/10.1007/s00431-017-3032-7

Garabedian C, Vaast P, Bigot J, Sfeir R, Michaud L, Gottrand F, et al. Atrésie de l'œsophage: prévalence, diagnostic anténatal et pronostic. J Gynecol Obstet Biol Reprod. 2014; 43: 424-430. https://doi.org/10.1016/j.jgyn.2013.11.014

Feng C, Li L, Zhang Y, Zhao Y, Huang J. Diagnosis and management of congenital type D esophageal atresia. Pediatr Surg Int. 2023; 39: 280. https://doi.org/10.1007/s00383-023-05519-6

Bakhru S, Koneti NR, Patil S, Dhulipudi B, Dash T, Kolar G, et al. Prenatal diagnosis of vascular rings and outcome. Ann Pediatr Cardiol. 2021; 14: 359-365. https://doi.org/10.4103/apc.APC_108_20

Zhou Y, Zhou Y, Yu T, Li W, Zhang J, Zhang C. Vascular ring: prenatal diagnosis and prognostic management based on sequential cross-sectional scanning by ultrasound. BMC Pregnancy Childbirth. 2023; 23: 308. https://doi.org/10.1186/s12884-023-05637-y

Swarnkar P, Speggiorin S, Austin BC, Nyman A, Salih C, Zidere V, et al. Contemporary surgical outcome and symptomatic relief following vascular ring surgery in children: effect of prenatal diagnosis. Eur J Cardiothorac Surg. 2022; 61: 1260-1268. https://doi.org/10.1093/ejcts/ezab527

Patria MF, Ghislanzoni S, Macchini F, Lelii M, Mori A, Leva E, et al. Respiratory Morbidity in Children with Repaired Congenital Esophageal Atresia with or without Tracheoesophageal Fistula. Int J Environ Res Public Health. 2017; 14. https://doi.org/10.1183/1393003.congress-2017.PA4007

Porcaro F, Valfré L, Aufiero LR, Dall'Oglio L, De Angelis P, Villani A, et al. Respiratory problems in children with esophageal atresia and tracheoesophageal fistula. Ital J Pediatr. 2017; 43: 1-9. https://doi.org/10.1186/s13052-017-0396-2

Krishnan U, Faure C. Update on Oesophageal Atresia-Tracheoesophageal Fistula. Frontiers Media SA; 2017. https://doi.org/10.3389/978-2-88945-304-7

Svetanoff WJ, Zendejas B, Smithers CJ, Prabhu SP, Baird CW, Jennings RW, et al. Great vessel anomalies and their impact on the surgical treatment of tracheobronchomalacia. J Pediatr Surg. 2020; 55: 1302-1308. https://doi.org/10.1016/j.jpedsurg.2019.08.001

Fraga JC, Jennings RW, Kim PCW. Pediatric tracheomalacia. Semin Pediatr Surg. 2016; 25: 156-164. https://doi.org/10.1053/j.sempedsurg.2016.02.008

Wallis C, Alexopoulou E, Antón-Pacheco JL, Bhatt JM, Bush A, Chang AB, et al. ERS statement on tracheomalacia and bronchomalacia in children. Eur Respir J. 2019; 54. https://doi.org/10.1183/13993003.00382-2019

Cook J, Chitty LS, De Coppi P, Ashworth M, Wallis C. The natural history of prenatally diagnosed congenital cystic lung lesions: long-term follow-up of 119 cases. Arch Dis Child. 2017; 102: 798-803. https://doi.org/10.1136/archdischild-2016-311233

Wilson RD, Hedrick HL, Liechty KW, Flake AW, Johnson MP, Bebbington M, et al. Cystic adenomatoid malformation of the lung: review of genetics, prenatal diagnosis, and in utero treatment. Am J Med Genet A. 2006; 140: 151-155. https://doi.org/10.1002/ajmg.a.31031

Sfakianaki AK, Copel JA. Congenital cystic lesions of the lung: congenital cystic adenomatoid malformation and bronchopulmonary sequestration. Rev Obstet Gynecol. 2012; 5: 85-93.

Collins AM, Ridgway PF, Killeen RP, Dodd JD, Tolan M. Congenital cystic adenomatoid malformation of the lung: hazards of delayed diagnosis. Respirology. 2009; 14: 1058-1060. https://doi.org/10.1111/j.1440-1843.2009.01603.x

Pio L, Gentilino V, Macchini F, Scarpa AA, Lo Piccolo R, Conforti A, et al. Congenital lung malformations: a nationwide survey on management aspects by the Italian Society of Pediatric Surgery. Pediatr Surg Int. 2024; 40. https://doi.org/10.1007/s00383-024-05635-x

Hellmund A, Berg C, Geipel A, Bludau M, Heydweiller A, Bachour H, et al. Prenatal Diagnosis and Evaluation of Sonographic Predictors for Intervention and Adverse Outcome in Congenital Pulmonary Airway Malformation. PLoS One. 2016; 11: e0150474. https://doi.org/10.1371/journal.pone.0150474

Koziarkiewicz M, Taczalska A, Piaseczna-Piotrowska A. Pulmonary torsion as an atypical complication of congenital esophageal atresia repair-a case report and review of literature. European J Pediatr Surg Rep. 2014; 2: 43-45. https://doi.org/10.1055/s-0033-1361834

Gischler SJ, van der Cammen-van Zijp MHM, Mazer P, Madern GC, Bax NMA, de Jongste JC, et al. A prospective comparative evaluation of persistent respiratory morbidity in esophageal atresia and congenital diaphragmatic hernia survivors. J Pediatr Surg. 2009; 44: 1683-1690. https://doi.org/10.1016/j.jpedsurg.2008.12.019

Benoist G, Mokhtari M, Deschildre A, Khen-Dunlop N, Storme L, Benachi A, et al. Risk of Readmission for Wheezing during Infancy in Children with Congenital Diaphragmatic Hernia. PLoS One. 2016; 11: e0155556. https://doi.org/10.1371/journal.pone.0155556

Cauley RP, Stoffan A, Potanos K, Fullington N, Graham DA, Finkelstein JA, et al. Pulmonary support on day 30 as a predictor of morbidity and mortality in congenital diaphragmatic hernia. J Pediatr Surg. 2013; 48: 1183-1189. https://doi.org/10.1016/j.jpedsurg.2013.03.012

Cauley RP, Potanos K, Fullington N, Bairdain S, Sheils CA, Finkelstein JA, et al. Pulmonary support on day of life 30 is a strong predictor of increased 1 and 5-year morbidity in survivors of congenital diaphragmatic hernia. J Pediatr Surg. 2015; 50: 849-855. https://doi.org/10.1016/j.jpedsurg.2014.12.007

Resch B. Product review on the monoclonal antibody palivizumab for prevention of respiratory syncytial virus infection. Hum Vaccin Immunother. 2017; 13: 2138-2149. https://doi.org/10.1080/21645515.2017.1337614

Caini S, Casalegno J-S, Rodrigues AP, Lee V, Cohen C, Huang QS, et al. Change in Age profile of Respiratory Syncytial Virus disease over the course of annual epidemics: a multi-national study. J Infect. 2024; 88: 106154. https://doi.org/10.1016/j.jinf.2024.106154

Cong B, Dighero I, Zhang T, Chung A, Nair H, Li Y. Understanding the age spectrum of respiratory syncytial virus associated hospitalisation and mortality burden based on statistical modelling methods: a systematic analysis. BMC Med. 2023; 21: 224. https://doi.org/10.1186/s12916-023-02932-5

Paes B, Kim D, Saleem M, Wong S, Mitchell I, Lanctot KL, et al. Respiratory syncytial virus prophylaxis in infants with congenital airway anomalies compared to standard indications and complex medical disorders. Eur J Pediatr. 2019; 178: 377-385. https://doi.org/10.1007/s00431-018-03308-1

Luna MS, Manzoni P, Paes B, Baraldi E, Cossey V, Kugelman A, et al. Expert consensus on palivizumab use for respiratory syncytial virus in developed countries. Paediatr Respir Rev. 2020; 33: 35-44. https://doi.org/10.1016/j.prrv.2018.12.001

[No title]. [cited 5 Jun 2024]. Available: https: //salute.regione.emilia-romagna.it/ssr/strumenti-e-informazioni/ptr/elaborati/315-palivizumab-nella-profilassi-stagionale-delle-infezioni-da-virus-respiratorio-sinciziale201d-ottobre-2018

Leibovitch L, Zohar I, Maayan-Mazger A, Mazkereth R, Strauss T, Bilik R. Infants Born with Esophageal Atresia with or without Tracheo-Esophageal Fistula: Short- and Long-Term Outcomes. Isr Med Assoc J. 2018; 20. Available: https: //pubmed.ncbi.nlm.nih.gov/29527854/

Mirra V, Maglione M, Di Micco LL, Montella S, Santamaria F. Longitudinal Follow-up of Chronic Pulmonary Manifestations in Esophageal Atresia: A Clinical Algorithm and Review of the Literature. Pediatr Neonatol. 2017; 58: 8-15. https://doi.org/10.1016/j.pedneo.2016.03.005

Jové Blanco A, Gutiérrez Vélez A, Solís-García G, Salcedo Posadas A, Bellón Alonso S, Rodríguez Cimadevilla JL. Comorbidities and course of lung function in patients with congenital esophageal atresia. Arch Argent Pediatr. 2020; 118: 25-30. https://doi.org/10.5546/aap.2020.eng.25

Pedersen RN, Markøw S, Kruse-Andersen S, Qvist N, Gerke O, Husby S, et al. Long-term pulmonary function in esophageal atresia-A case-control study. Pediatr Pulmonol. 2017; 52: 98-106. https://doi.org/10.1002/ppul.23477

Donoso F, Hedenström H, Malinovschi A, E Lilja H. Pulmonary function in children and adolescents after esophageal atresia repair. Pediatr Pulmonol. 2020; 55: 206-213. https://doi.org/10.1002/ppul.24517

Sistonen S, Malmberg P, Malmström K, Haahtela T, Sarna S, Rintala RJ, et al. Repaired oesophageal atresia: respiratory morbidity and pulmonary function in adults. Eur Respir J. 2010; 36: 1106-1112. https://doi.org/10.1183/09031936.00153209

Hijkoop A, van Schoonhoven MM, van Rosmalen J, Tibboel D, van der Cammen-van Zijp MHM, Pijnenburg MW, et al. Lung function, exercise tolerance, and physical growth of children with congenital lung malformations at 8 years of age. Pediatr Pulmonol. 2019; 54: 1326-1334. https://doi.org/10.1002/ppul.24345

Maneenil G, Ruangnapa K, Thatrimontrichai A, Janjindamai W, Dissaneevate S, Anantaseree W, et al. Clinical presentation and outcome in congenital pulmonary malformation: 25 year retrospective study in Thailand. Pediatr Int. 2019; 61. https://doi.org/10.1111/ped.13934

Pio L, Jafar Y, Carvalho L, Ali L, Delcaux C, Julien-Marsollier F, et al. Thoracoscopic lobectomy for congenital pulmonary airway malformations before or after 5 months of age: evaluation of pulmonary function. Minerva pediatrics. 2023 [cited 10 Jun 2024]. https://doi.org/10.23736/S2724-5276.23.07124-0

Dao DT, Hayden LP, Buchmiller TL, Kharasch VS, Kamran A, Smithers CJ, et al. Longitudinal Analysis of Pulmonary Function in Survivors of Congenital Diaphragmatic Hernia. J Pediatr. 2020; 216: 158-164.e2. https://doi.org/10.1016/j.jpeds.2019.09.072

Calabrese C, Corcione N, Di Spirito V, Guarino C, Rossi G, Domenico Gargiulo G, et al. Recurrent respiratory infections caused by a double aortic arch: The diagnostic role of spirometry. Respir Med Case Rep. 2013; 8: 47-50. https://doi.org/10.1016/j.rmcr.2012.12.006

Porcaro F, Ciliberti P, Petreschi F, Secinaro A, Allegorico A, Coretti A, et al. Long term respiratory morbidity in patients with vascular rings: a review. Ital J Pediatr. 2023; 49: 24. https://doi.org/10.1186/s13052-023-01430-x

Serio P, Nenna R, Fainardi V, Grisotto L, Biggeri A, Leone R, et al. Residual tracheobronchial malacia after surgery for vascular compression in children: treatment with stenting. Eur J Cardiothorac Surg. 2017; 51: 211-217. https://doi.org/10.1093/ejcts/ezw299

Wilson LM, Morrison L, Robinson KA. Airway clearance techniques for cystic fibrosis: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev. 2019; 1. https://doi.org/10.1002/14651858.CD011231.pub2

Spinou A, Hererro-Cortina B, Aliberti S, Goeminne PC, Polverino E, Dimakou K, et al. Airway clearance management in people with bronchiectasis: data from the European Bronchiectasis Registry (EMBARC). Eur Respir J. 2024; 63. https://doi.org/10.1183/13993003.01689-2023

Kienenberger ZE, Farber TO, Teresi ME, Milavetz F, Singh SB, Larson OK, et al. Patient and Caregiver Perceptions of Airway Clearance Methods Used for Cystic Fibrosis. Can Respir J. 2023; 2023. https://doi.org/10.1155/2023/1422319

Grillo LJF, Housley GM, Gangadharan S, Majid A, Hull JH. Physiotherapy for large airway collapse: an ABC approach. ERJ Open Research. 2022; 8. https://doi.org/10.1183/23120541.00510-2021

Pisi G, Chetta A. Airway clearance therapy in cystic fibrosis patients. Acta Biomed. 2009; 80. Available: https: //pubmed.ncbi.nlm.nih.gov/19848046/

Sirithangkul S, Ranganathan S, Robinson PJ, Robertson CF. Positive expiratory pressure to enhance cough effectiveness in tracheomalacia. J Med Assoc Thai. 2010; 93 Suppl 6. Available: https: //pubmed.ncbi.nlm.nih.gov/21280523/

Simri - Società Italiana per le Malattie Respiratorie Infantili. [cited 8 Jun 2024]. Available: https: //simri.it/simri/idPage/123/idArticle/553/Pneumologia-pediatrica.html

Downloads

Published

2024-07-05

How to Cite

Mussi, N. ., Maugeri, E. ., Deolmi, M. ., Scarpa, A. ., Casolari, E. ., Pisi, G. ., Fainardi, V. ., & Esposito, S. . (2024). Respiratory Follow-up in a Cohort of Children with Congenital Malformations Affecting Lung Development: A Cohort Study. International Journal of Pediatrics and Child Health, 12, 80–88. https://doi.org/10.12974/2311-8687.2024.12.11

Issue

Section

Articles