Polycaprolactone-Coated Alginate/b-Tricalcium Phosphate Beads to Locally Deliver Vancomycin: A Pilot Study
DOI:
https://doi.org/10.12974/2313-0954.2014.01.01.2Keywords:
Alginate/????-tricalcium phosphate, polycaprolactone, local delivery, vancomycin, orthopedic infectionAbstract
Orthopedic device-related infections (ODRI) are difficult to control and the management of ODRI most frequently includes surgery and long-term antimicrobial therapy. Local application of vancomycin through a biodegradable carrier like alginate would provide a valuable tool, although it is hard to control the drug-release for a prolonged period of time due to its permeability. Coating with hydrophobic polymer such as polycaprolactone (PCL) may sustain the vancomycin release. We fabricated four types of vancomycin containing alginate/b-TCP beads (uncoated, coated with 1.25 w/v%, 2.5 w/v%, and 5.0 w/v% PCL). Scanning electron microscope (SEM) revealed that b-TCP particles were uniformly distributed on the surface of the uncoated beads and the most homogenous coating layer was observed using 2.5 w/v% PCL. Vancomycin release and its bioactivity were measured at the designated time points (1, 4, 12, 24 hours, then every day until disintegration). Burst release occured on the first hour, day 1, 2 and 6 respectively. The beads without coating dissolved at day 3, and those with different coatings dissolved at day 5, 6, and 9. The minimum concentration of the vancomycin in the elution was approximately 5 mg/L, higher than the vancomycin’s minimum inhibitory concentrations (MICs) for Methicillin-resistant Staphylococcus aureus (MRSA). PCL-coated alginate/b-TCP beads loaded with vancomycin may provide a potential local drug delivery device for the adjuvant antimicrobial therapy of the ODRI.
References
Askenasy N, Farkas DL. Optical imaging of PKH-labeled hematopoietic cells in recipient bone marrow in vivo. Stem Cells 2002; 20: 501-513. http://dx.doi.org/10.1634/stemcells.20-6-501
Gustilo RB, Mendoza RM, Williams DN. Problems In The Management of Type-III (Severe) Open Fractures - A New Classification of Type-III Open Fracture. J Trauma 1984; 24: 742-746. http://dx.doi.org/10.1097/00005373-198408000-00009
Lew DP, Waldvogel FA. Osteomyelitis. Lancet 2004; 364: 369-379. http://dx.doi.org/10.1016/S0140-6736(04)16727-5
Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-Joint Infections. N Engl J Med 2004; 351: 1645-1654. http://dx.doi.org/10.1056/NEJMra040181
Zhang LF, Yang DJ, Chen HC, Sun R, Xu L, Xiong ZC, Govender T, Xiong CD. An ionically crosslinked hydrogel containing vancomycin coating on a porous scaffold for drug delivery and cell culture. Int. J. Pharm 2008; 353: 74-87. http://dx.doi.org/10.1016/j.ijpharm.2007.11.023
Widmer A. New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis 2001; 33: S94-S106. http://dx.doi.org/10.1086/321863
Betsch BY, Eggli S, Siebenrock KA, Tauber MG, Muhlemann K. Treatment of joint prosthesis infection in accordance with current recommendations improves outcome. Clin Infect Dis 2008; 46: 1221-1226. http://dx.doi.org/10.1086/529436
Lazzarini L, Mader JT, Calhoun JH. Osteomyelitis in long bones. J Bone Joint Surg Am 2004; 86: 2305-2318.
Buchholz H, Engelbrecht H.
[Depot effects of various antibiotics mixed with Palacos resins]. Chirurg 1970; 41: 511- 515.
Lazzarini L, Mader JT, Calhoun JH. Osteomyelitis in long bones. J Bone Joint Surg Am 2004: 2305-2318.
Gristina A. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 1987; 237: 1588-1595. http://dx.doi.org/10.1126/science.3629258
Costerton JW. Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin Orthop Relat Res 2005: 7-11. http://dx.doi.org/10.1097/00003086-200508000-00003
Ferry T, Uçkay I, Vaudaux P, François P, Schrenzel J, Harbarth S, Laurent F, Bernard L, Vandenesch F, Etienne J, Hoffmeyer P, Lew D. Risk factors for treatment failure in orthopedic device-related methicillin-resistant Staphylococcus aureus infection. EurJ Clin Microbiol Infect Dis 2010; 29: 171-180. http://dx.doi.org/10.1007/s10096-009-0837-y
Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements: Competitive drug carriers for the musculoskeletal system? Biomaterials 2006; 27: 2171-2177. http://dx.doi.org/10.1016/j.biomaterials.2005.11.023
Della Valle AG, Bostrom M, Brause B, Harney C, Salvati EA. Effective bactericidal activity of tobramycin and vancomycin eluted from acrylic bone cement. Acta Orthop Scand 2001; 72: 237-240. http://dx.doi.org/10.1080/00016470152846547
Kilgus D, Howe D, Strang A. Results of periprosthetic hip and knee infections caused by resistant bacteria. Clin Orthop Relat Res 2002; 404: 116-124. http://dx.doi.org/10.1097/00003086-200211000-00021
Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 2006; 4: 295-305. http://dx.doi.org/10.1038/nrmicro1384
Tsukayama D, Wicklund B, Gustilo R. Suppressive antibiotic therapy in chronic prosthetic joint infections. Orthopaedics 1991; 14: 841-844.
Wilson M, Kelley K, Thornhill T. Infection as a complication of total kneereplacement arthroplasty. Risk factors and treatment in sixty-seven cases. . J Bone Joint Surg Am 1990; 72: 878-883.
Smith K, Perez A, Ramage G, Gemmell CG, Lang S. Comparison of biofilm-associated cell survival following in vitro exposure of meticillin-resistant Staphylococcus aureus biofilms to the antibiotics clindamycin, daptomycin, linezolid, tigecycline and vancomycin. Int J Antimicrob Agents 2009; 33: 374-378. http://dx.doi.org/10.1016/j.ijantimicag.2008.08.029
Lewis CS, Katz J, Baker MI, Supronowicz PR, Gill E, Cobb RR. Local antibiotic delivery with bovine cancellous chips. J Biomater Appl 2011; 26: 491-506. http://dx.doi.org/10.1177/0885328210375729
Winkler H. Rationale for one stage exchange of infected hip replacement using uncemented implants and antibiotic impregnated bone graft. Int J Med Sci 2009; 6: 247-252. http://dx.doi.org/10.7150/ijms.6.247
Esquisabel A, Hernandez R, Igartua M. Production of BCG alginate-PLL microcapsules by emulsification/internal gelation. J Microencap 1997; 14: 627-638. http://dx.doi.org/10.3109/02652049709006815
De Vos P, De Haan B, Van Schilfgaarde R. Effect of the alginate composition on the biocompatibility of alginatepolylysine microcapsules. Biomaterials 1997; 18: 273-278. http://dx.doi.org/10.1016/S0142-9612(96)00135-4
Becker TA, Kipke DR, Brandon T. Calcium alginate gel: A biocompatible and mechanically stable polymer for endovascular embolization. J Biomed Mater Res 2001; 54: 76-86. http://dx.doi.org/10.1002/1097-4636(200101)54:1<76::AIDJBM9> 3.0.CO;2-V
Chun K, Kwon I, Kim Y. Preparation of sodium alginate microspheres containing hy- drophilic ????-lactam antibiotics. Arch Pharm Res 1996; 19: 160-111. http://dx.doi.org/10.1007/BF02976843
Kobaslija M, McQuade DT. Removable Colored Coatings Based on Calcium Alginate Hydrogels. Biomacromolecules 2006; 7: 2357-2361. http://dx.doi.org/10.1021/bm060341q
Chun K, Kwon I, Kim Y. Preparation of sodium alginate microspheres containing hy- drophilic B-lactam antibiotics. Arch Pharm Res 1996; 19: 160-111. http://dx.doi.org/10.1007/BF02976843
Ueng SWN, Yuan LJ, Lee N, Lin SS, Chan EC, Weng JH. In vivo study of biodegradable alginate antibiotic beads in rabbits. J Orthop Res 2004; 22: 592-599. http://dx.doi.org/10.1016/j.orthres.2003.09.001
Goodwin CJ, Braden M, Downes S, Marshall NJ. Release of bioactive human growth hormone from a biodegradable material: poly(epsilon-caprolactone). J Biomed Mater Res 1998; 40: 204-213. http://dx.doi.org/10.1002/(SICI)1097- 4636(199805)40:2<204::AID-JBM5>3.0.CO;2-P
Madhavan RV, Rosemary MJ, Nandkumar MA, Krishnan KV, Krishnan LK. Silver nanoparticle impregnated poly (varepsilon-caprolactone) scaffolds: optimization of antimicrobial and noncytotoxic concentrations. Tissue Eng Part A 2011; 17: 439-449. http://dx.doi.org/10.1089/ten.tea.2009.0791
McNeil SE, Griffiths HR, Perrie Y. Polycaprolactone fibres as a potential delivery system for collagen to support bone regeneration. Curr Drug Deliv 2011; 8: 448-455. http://dx.doi.org/10.2174/156720111795767951
Cao J, Xiu KM, Zhu K, Chen YW, Luo XL. Copolymer nanoparticles composed of sulfobetaine and poly(epsiloncaprolactone) as novel anticancer drug carriers. J Biomed Mater Res 2012; 12: 34120.
Yeo A, Rai B, Sju E, Cheong JJ, Teoh SH. The degradation profile of novel, bioresorbable PCL-TCP scaffolds: An in vitro and in vivo study. J Biomed Mater Res 2008; 84A: 208-218. http://dx.doi.org/10.1002/jbm.a.31454
Xiao XF, Liu RF, Huang QY, Ding XH. Preparation and characterization of hydroxyapatite/polycaprolactone-chitosan composites. J Mater Sci-Mater Med 2009; 20: 2375-2383. http://dx.doi.org/10.1007/s10856-009-3810-5
Woodward SC, Brewer PS, Moatamed F, Schindler A, Pitt CG. The intracellular degradation of poly(epsiloncaprolactone). J Biomed Mater Res 1985; 19: 437-444. http://dx.doi.org/10.1002/jbm.820190408
Darney PD, Monroe SE, Klaisle CM, Alvarado A. Clinical evaluation of the Capronor contraceptive implant: preliminary report. Am J Obstet Gynecol 1989; 160: 1292-1295. http://dx.doi.org/10.1016/S0002-9378(89)80015-8
Gazdag AR, Lane JM, Glaser D, Forster RA. Alternatives to Autogenous Bone Graft: Efficacy and Indications. J Am Acad Orthop Surg 1995; 3: 1-8.
Li B, Yoshii T, Hafeman AE, Nyman JS, Wenke JC, Guelcher SA. The effects of rhBMP-2 released from biodegradable polyurethane/microsphere composite scaffolds on new bone formation in rat femora. Biomaterials 2009; 30: 6768-6779. http://dx.doi.org/10.1016/j.biomaterials.2009.08.038
Tenover FC, Lancaster MV, Hill BC, Steward CD, Stocker SA, Hancock GA, O'Hara CM, McAllister SK, Clark NC, Hiramatsu K. Characterization of staphylococci with reduced susceptibilities to vancomycin and other glycopeptides. J Clin Microbiol 1998; 36: 1020-1027.
Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Int J Artif Organs 2005; 28: 1062-1068.
Mack D, Becker P, Chatterjee I, Dobinsky S, Knobloch JK, Peters G, Rohde H, Herrmann M. Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol 2004; 294: 203-212. http://dx.doi.org/10.1016/j.ijmm.2004.06.015
Stevens CM, Tetsworth KD, Calhoun JH, Mader JT. An articulated antibiotic spacer used for infected total knee arthroplasty: a comparative in vitro elution study of Simplex and Palacos bone cements. J Orthop Res 2005; 23: 27-33. http://dx.doi.org/10.1016/j.orthres.2004.03.003
Soriano A, Marco F, Martinez JA, Pisos E, Almela M, Dimova VP, Alamo D, Ortega M, Lopez J, Mensa J. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 2008; 46: 193-200. http://dx.doi.org/10.1086/524667
Minelli EB, Benini A, Magnan B, Bartolozzi P. Release of gentamicin and vancomycin from temporary human hip spacers in two-stage revision of infected arthroplasty. J Antimicrob Chemother 2004; 53: 329-334. http://dx.doi.org/10.1093/jac/dkh032
Patzakis M, Mazur K, Wilkins J, Sherman R, Holtom P. Septopal beads and autogenous bone grafting for bone defects in patients with chronic osteomyelitis. Clin Orthop Relat Res 1993; 295: 112-118.
Suzuki Y, Nishimura Y, Tanihara M, Suzuki K, Nakamura T, Shimizu Y, Yamawaki Y, Kakimaru Y. Evaluation of a novel alginate gel dressing: Cytotoxicity to fibroblasts in vitro and foreign-body reaction in pig skin in vivo. J Biomed Mater Res 1998; 39: 317-322. http://dx.doi.org/10.1002/(SICI)1097- 4636(199802)39:2<317::AID-JBM20>3.0.CO;2-8
Kanellakopoulou K, Giamarellos-Bourboulis EJ. Carrier systems for the local delivery of antibiotics in bone infections. Drugs 2000; 59: 1223-1232. http://dx.doi.org/10.2165/00003495-200059060-00003
Hanssen AD, Spangehl MJ. Practical applications of antibiotic-loaded bone cement for treatment of infected joint replacements. Clin Orthop Relat Res 2004; 427: 79-85. http://dx.doi.org/10.1097/01.blo.0000143806.72379.7d
Adams K, Couch L, Cierny G, Calhoun J, Mader JT. In vitro and in vivo evaluation of antibiotic diffusion from antibioticimpregnated polymethylmethacrylate beads. Clin Orthop Relat Res 1992; 278: 244-252.
Hanssen AD. Prophylactic use of antibiotic bone cement: an emerging standard--in opposition. J Arthroplasty 2004; 19: 73-77. http://dx.doi.org/10.1016/j.arth.2004.04.006
Miller R, McLaren A, Leon C, McLemore R. Mixing Method Affects Elution and Strength of High-dose ALBC: A Pilot Study. Clin Orthop Relat Res 2012; 3: 3.
Prakash V, Lewis JS, 2nd, Jorgensen JH. Vancomycin MICs for methicillin-resistant Staphylococcus aureus isolates differ based upon the susceptibility test method used. Antimicrob Agents Chemother 2008; 52: 6. http://dx.doi.org/10.1128/AAC.00904-08
Alsberg E, Kong HJ, Hirano Y, Smith MK, Albeiruti A, Mooney DJ. Regulating bone formation via controlled scaffold degradation. J Dent Res 2003; 82: 903-908. http://dx.doi.org/10.1177/154405910308201111
Simmons CA, Alsberg E, Hsiong S, Kim WJ, Mooney DJ. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 2004; 35: 562-569. http://dx.doi.org/10.1016/j.bone.2004.02.027
Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 2010; 9: 518-526. http://dx.doi.org/10.1038/nmat2732
Krebs MD, Salter E, Chen E, Sutter KA, Alsberg E. Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis. J Biomed Mater Res A 2010; 92: 1131-1138.
Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE. An alginatebased hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 2011; 32: 65-74. http://dx.doi.org/10.1016/j.biomaterials.2010.08.074
Joly A, Deshardins J, Fremond B. Survival proliferation, and functions of porcine hepatocytes encapsulated in coated alginate beads: A step toward a reliable bioartificial liver. Transplantation 1997; 63: 795-803. http://dx.doi.org/10.1097/00007890-199703270-00002
Hou T, Xu J, Li Q, Feng J, Zen L. In vitro evaluation of a fibrin gel antibiotic delivery system containing mesenchymal stem cells and vancomycin alginate beads for treating bone infections and facilitating bone formation. Tissue Eng Part A 2008; 14: 1173-1182. http://dx.doi.org/10.1089/ten.tea.2007.0159
Ueng SW, Lee MS, Lin SS, Chan EC, Liu SJ. Development of a biodegradable alginate carrier system for antibiotics and bone cells. J Orthop Res 2007; 25: 62-72. http://dx.doi.org/10.1002/jor.20286
Ueng SWN, Lee SS, Lin SS, Chan EC, Hsu BRS, Chen KT. Biodegradable alginate antibiotic beads. Clin Orthop Relat Res 2000: 250-259. http://dx.doi.org/10.1097/00003086-200011000-00034
Ueng SWN, Yuan LJ, Lee N, Lin SS, Chan EC, Weng JH. In vivo study of biodegradable alginate antibiotic beads in rabbits. J Orthop Res 2004; 22: 592-599. http://dx.doi.org/10.1016/j.orthres.2003.09.001
Andersen T, Strand BL, Formo K, Alsberg E, Christensen BE. Alginates as biomaterials in tissue engineering. Carbohydr Chem 2012; 37: 227-258.
Hutmacher DW, Goh JC, Teoh SH. An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singapore 2001; 30: 183-191.
Dong JA, Uemura T, Shirasaki Y, Tateishi T. Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials 2002; 23: 4493-4502. http://dx.doi.org/10.1016/S0142-9612(02)00193-X
Yang ZJ, Yuan HP, Tong WD, Zou P, Chen WQ, Zhang XD. Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: Variability among different kinds of animals. Biomaterials 1996; 17: 2131-2137. http://dx.doi.org/10.1016/0142-9612(96)00044-0
Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials.
Aimin C, Chunlin H, Juliang B, Tinyin Z, Zhichao D. Antibiotic loaded chitosan bar. An in vitro, in vivo study of a possible treatment for osteomyelitis. Clin Orthop Relat Res 1999; 366: 239-247. http://dx.doi.org/10.1097/00003086-199909000-00031
Hanssen A. Local antibiotic delivery vehicles in the treatment of musculoskeletal infection. Clin Orthop Relat Res 2005; 437: 91-96. http://dx.doi.org/10.1097/01.blo.0000175713.30506.77
Richelsoph K, Webb N, Haggard W. Elution behavior of daptomycin-loaded calcium sulfate pellets: a preliminary study. Clin Orthop Relat Res 2007; 461: 68-73.