Examining Various Graft Substrates and Their Clinical Evidence in the Treatment of Tibial Plateau Fractures

Authors

  • Timothy R. Niedzielak Orthopedic Surgery Resident Physician, Broward Health Medical Center, Department of Orthopedic Surgery, 1600 S. Andrews Avenue – GME, 3rd floor West Wing, Fort Lauderdale, Florida, USA 33316
  • Michael Downing Nova Southeastern University College of Osteopathic Medicine, Fort Lauderdale, Florida, USA
  • Alexander Ting Nova Southeastern University College of Osteopathic Medicine, Fort Lauderdale, Florida, USA
  • Charles De la Rosa Nova Southeastern University College of Osteopathic Medicine, Fort Lauderdale, Florida, USA
  • Joshua Berko Nova Southeastern University College of Osteopathic Medicine, Fort Lauderdale, Florida, USA
  • Nicholas Lampasona Nova Southeastern University College of Osteopathic Medicine, Fort Lauderdale, Florida, USA

DOI:

https://doi.org/10.12974/2313-0954.2019.06.4

Keywords:

Allograft, Autograft, Biologics, Calcium Hydroxyapatite, DBM, Synthetics, Xenograft.

Abstract

Tibial plateau fractures (TPF) are complex injuries of the tibia that involve the articular surface and commonly have depression of subchondral and metaphyseal bone. Common sequelae of this injury include arthritis and gait disturbances. A popular surgical strategy for this fracture calls for elevation of subchondral bone to restore the joint line, in turn leaving a metaphyseal bone void; this is then commonly secured with plates and screws. Autologous bone has been the gold-standard graft option to fill these voids, but other filling agents such as allografts, biologic grafts, and xenografts are gaining popularity TPF surgery. This is because bone graft substitutes provide predictable outcomes in the treatment of TPF and avoid complications such as donor site pain, infection, increased blood loss, and increased operative time that is seen with autografts. This review explores the benefits, complications, and outcomes of clinically researched graft substrates used for TPF reconstruction. Secondarily, we aim to find potential graft candidates for future clinical research that will progress the treatment of TPF. Internet searches with specific keywords were conducted on different journal databases to find clinically researched graft options in the treatment of TPF within the last 10 years. Multiple studies of various bone graft substitutes achieved similar, if not better results than autologous bone grafts in the treatment of TPF. A summary of each clinically researched graft in this review can be found in Table 1. Establishing a graft selection protocol remains a challenge for fracture surgeons, as well as choosing the best graft material. Future studies should aim to establish a superior graft substrate based clinical outcomes, while minimizing the cost and morbidity to the patient. 

References

Prat-Fabregat S, Camacho-Carrasco P. Treatment strategy for tibial plateau fractures: an update. EFORT Open Rev. 2017; 1(5): 225‐232. https://doi.org/10.1302/2058-5241.1.000031

Arrington, E D, et al. "Complications of Iliac Crest Bone Graft Harvesting." Clinical Orthopaedics and Related Research, U.S. National Library of Medicine, Aug. 1996, www.ncbi.nlm.nih.gov/pubmed/8769465. https://doi.org/10.1097/00003086-199608000-00037

Sferopoulos Nk. "Autograft Transfer from the Ipsilateral Femoral Condyle in Depressed Tibial Plateau Fractures." The Open Orthopaedics Journal, 2014; 8(1): 310-315. https://doi.org/10.2174/1874325001408010310

Mohammed R, Metikala S, & Bhogadi P. Comparative study of autograft harvested from contra lateral proximal tibia versus the iliac crest for operative management of depressed tibial plateau fractures. Acta Orthopaedica Belgica 2017; 83(2): 276-283.

Steinlauf, Steven, and Benjamin C. Taylor. "Bone Grafting." Orthobullets, www.orthobullets.com/basicscience/ 9011/bone-grafting.

Kwiatkowski K, Cejmer W, Sowiski T. Frozen allogeneic spongy bone grafts in filling the defects caused by fractures of proximal tibia. Ann Transplant. 1999; 4(3-4): 49-51.

Lasanianos, Nick G. et al. "The use of freeze-dried cancelous allograft in the management of impacted tibial plateau fractures." Injury 2008; 39(10): 1106-12. https://doi.org/10.1016/j.injury.2008.04.005

Bagherifard A, Ghandhari H, Jabalameli M. et al. Autograft versus allograft reconstruction of acute tibial plateau fractures: a comparative study of complications and outcome. Eur J Orthop Surg Traumatol 2017; 27: 665-671. https://doi.org/10.1007/s00590-016-1863-y

Feng W, Fu L, Liu J. et al. The use of deep frozen and irradiated bone allografts in the reconstruction of tibial plateau fractures. Cell Tissue Bank 2013; 14: 375-380. https://doi.org/10.1007/s10561-012-9342-0

Veitch Stephen W. FRCS; Stroud Rowenna M. MSc; Toms Andrew D. FRCS Compaction Bone Grafting in Tibial Plateau Fracture Fixation, The Journal of Trauma: Injury, Infection, and Critical Care: 2010; 68(4): 980-983 https://doi.org/10.1097/TA.0b013e3181b16e3d

Gracitelli GC, Tirico LEP, McCauley JC, Pulido PA, & Bugbee WD. Fresh Osteochondral Allograft Transplantation for Fractures of the Knee. Cartilage 2017; 8(2): 155-161. https://doi.org/10.1177/1947603516657640

Berkes Marschall B. MD*; Little, Milton TM. MD*; Schottel, Patrick C. MD*; Pardee, Nadine C. BS*; Zuiderbaan, Aernout MD*; Lazaro, Lionel E. MD*; Helfet, David L. MD*,†; Lorich, Dean G. MD*,† Outcomes of Schatzker II Tibial Plateau Fracture Open Reduction Internal Fixation Using Structural Bone Allograft, Journal of Orthopaedic Trauma: February 2014; 28(2): 97-102. https://doi.org/10.1097/BOT.0b013e31829aaee1

Roberts, Timothy T, and Andrew J Rosenbaum. "Bone Grafts, Bone Substitutes and Orthobiologics: the Bridge between Basic Science and Clinical Advancements in Fracture Healing." Organogenesis, Landes Bioscience, 2012, www.ncbi.nlm.nih.gov/pmc/articles/PMC3562252/. https://doi.org/10.4161/org.23306

Zhang, Hao, et al. "Demineralized Bone Matrix Carriers and Their Clinical Applications: An Overview." Orthopaedic Surgery, John Wiley & Sons Australia, Ltd, Oct. 2019, www.ncbi.nlm.nih.gov/pmc/articles/PMC6819172/.

Newman JT, Smith WR, Ziran BH, Hasenboehler EA, Stahel PF, & Morgan SJ. Efficacy of Composite Allograft and Demineralized Bone Matrix Graft in Treating Tibial Plateau Fractures with Bone Loss. Orthopedics (Online) 2011; 31(7): e1. https://doi.org/10.3928/01477447-20080701-17

Nota SP, Kloen P. Heterotopic Ossification around the Knee after Internal Fixation of a Complex Tibial Plateau Fracture Combined with the Use of Demineralized Bone Matrix (DBM): A Case Report. Arch Bone Jt Surg 2014; 2(4): 250‐254.

Goff T, Kanakaris NK, Giannoudis PV. Use of bone graft substitutes in the management of tibial plateau fractures. Injury 2013; 44 Suppl 1: S86‐S94. https://doi.org/10.1016/S0020-1383(13)70019-6

Iundusi R, Gasbarra E, D'Arienzo M. et al. Augmentation of tibial plateau fractures with an injectable bone substitute: CERAMENT™. Three-year follow-up from a prospective study. BMC Musculoskelet Disord 2015; 16, 115. https://doi.org/10.1186/s12891-015-0574-6

Hofmann A, Gorbulev S, Guehring T, Schulz AP, Schupfner R, Raschke M, Zeitter S. Autologous Iliac Bone Graft Compared with Biphasic Hydroxyapatite and Calcium Sulfate Cement for the Treatment of Bone Defects in Tibial Plateau Fractures: A Prospective, Randomized, Open-Label, Multicenter Study. The Journal of Bone and Joint Surgery. American 2020; 102(3): 179-193. https://doi.org/10.2106/JBJS.19.00680

Zhou H, & Yu B. Using of injectable bio-degradable calcium sulfate as bone graft substitute in the treatment of periarticular fractures. International Journal of Clinical and Experimental Medicine 2016; 9(11): 21645-21653.

Ong JCY, Kennedy MT, Mitra A. et al. Fixation of tibial plateau fractures with synthetic bone graft versus natural bone graft: a comparison study. Ir J Med Sci 2012; 181: 247- 252. https://doi.org/10.1007/s11845-011-0797-y

Hanke A, Bäumlein M, Lang S, et al. Long-term radiographic appearance of calcium-phosphate synthetic bone grafts after surgical treatment of tibial plateau fractures. Injury 2017; 48(12): 2807‐2813. https://doi.org/10.1016/j.injury.2017.10.030

Oztürkmen Y, Caniklioğlu M, Karamehmetoğlu M, Sükür E. Calcium phosphate cement augmentation in the treatment of depressed tibial plateau fractures with open reduction and internal fixation. Acta Orthopaedica et Traumatologica Turcica. 2010; 44(4): 262-269. https://doi.org/10.3944/AOTT.2010.2406

Yin, Xiaofan, et al. "Clinical assessment of calcium phosphate cement to treat tibial plateau fractures." Journal of biomaterials applications 2013; 28(2): 199-206. https://doi.org/10.1177/0885328212443295

Pernaa K. et al. "Bioactive Glass S53P4 and Autograft Bone in Treatment of Depressed Tibial Plateau Fractures - A Prospective Randomized 11-Year Follow-Up." Journal of Long-Term Effects of Medical Implants 2011; 21(2): 139-148. https://doi.org/10.1615/JLongTermEffMedImplants.v21.i2.40

Heikkilä JT, Kukkonen J, Aho AJ. et al. Bioactive glass granules: a suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study. J Mater Sci: Mater Med 2011; 22: 1073-1080. https://doi.org/10.1007/s10856-011-4272-0

Jónsson BY, and B Mjöberg. "Porous Titanium Granules Are Better than Autograft Bone as a Bone Void Filler in Lateral Tibial Plateau Fractures." The Bone & Joint Journal 2015; 97(B6): 836-841. https://doi.org/10.1302/0301-620X.97B6.34552

Bansal, M R et al. "Bovine cancellous xenograft in the treatment of tibial plateau fractures in elderly patients." International orthopaedics 2009; 33(3): 779-84. https://doi.org/10.1007/s00264-008-0526-y

Li, Jiantao, et al. "Fixation augmentation using titanium cage packing with xenograft in the treatment of tibial plateau fractures." Injury 2020; 51(2): 490-496. https://doi.org/10.1016/j.injury.2019.10.025

Ferracini R, Bistolfi A, Garibaldi R, Furfaro V, Battista A, Perale G. Composite Xenohybrid Bovine Bone-Derived Scaffold as Bone Substitute for the Treatment of Tibial Plateau Fractures. Appl Sci 2019; 9: 2675. https://doi.org/10.3390/app9132675

Collins NJ, Misra D, Felson DT, Crossley KM, Roos EM. Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res (Hoboken). 2011; 63 Suppl 11(0 11): S208‐S228. https://doi.org/10.1002/acr.20632

Insall JN, Dorr LD, Scott RD, Scott WN. Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res. 1989; (248): 13-4. link to pubmed. Link SF36, SF12 https://doi.org/10.1097/00003086-198911000-00004

Asif S, Choon DS. Midterm results of cemented Press Fit Condylar Sigma total knee arthroplasty system. J Orthop Surg (Hong Kong). 2005; 13(3): 280-4. https://doi.org/10.1177/230949900501300311

Ugino FK, Righetti CM, Alves DP, Guimarães RP, Honda EK, Ono NK. Evaluation of the reliability of the modified Merle d'Aubigné and Postel Method. Acta Ortop Bras. 2012; 20(4): 213‐217. https://doi.org/10.1590/S1413-78522012000400004

Rasmussen PS. Tibial condylar fractures. Impairment of knee joint stability as an indication for surgical treatment. J Bone Joint Surg Am. 1973; 55(7): 1331‐1350. https://doi.org/10.2106/00004623-197355070-00001

Knee Function-Rasmussen, Journal of Orthopaedic Trauma: September 2006; 20(8): p S88 https://doi.org/10.1097/00005131-200609001-00017

"Interpreting the SF-12." Health.utah.gov, Utah Department of Health, 2001, health.utah.gov/opha/publications/2001hss/sf12/SF12_Interp reting.pdf.

Lins L, Carvalho FM. SF-36 total score as a single measure of health-related quality of life: Scoping review. SAGE Open Med. 2016. 4: 2050312116671725. Published 2016 Oct 4 https://doi.org/10.1177/2050312116671725

Moradiya, Niravkumar, et al. "A detailed statistical analysis of tibia plateau fractures treated with locking tibia plate: A study of 63 cases." International Journal of Orthopaedics 2017; 3(1): 314-321. https://doi.org/10.22271/ortho.2017.v3.i1e.50

WOMAC Osteoarthritis Index. (2020, February 3). Physiopedia. Retrieved 16:23, May 20, 2020 from https://www.physiopedia. com/index.php?title=WOMAC_Osteoarthritis_Index&ol did=229489.

Downloads

Published

2019-03-08

How to Cite

Niedzielak, T. R., Downing, M., Ting, A., De la Rosa, C. ., Berko, J., & Lampasona, N. (2019). Examining Various Graft Substrates and Their Clinical Evidence in the Treatment of Tibial Plateau Fractures. International Journal of Orthopedics and Rehabilitation, 6, 18–27. https://doi.org/10.12974/2313-0954.2019.06.4

Issue

Section

Articles