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Abstract: To clarify the role of trace elements in the etiology and the pathogenesis of benign and malignant giant cell 
tumor (GCT) of bone, a nondestructive neutron activation analysis with high resolution spectrometry of long-lived 
radionuclides were performed. The silver (Ag), cobalt (Co), chromium (Cr), iron (Fe), mercury (Hg), rubidium (Rb), 
antimony (Sb), selenium (Se), and zinc (Zn) mass fraction were measured in three groups of samples: normal bone 
samples from 27 patients with intact bone (12 females and 15 males), who had died from various non bone related 
causes, mainly unexpectedly from trauma, and also in samples, obtained from open biopsies or after operation of 10 
patients with benign GCT (4 females and 6 males) and 10 patients with malignant GCT (4 females and 6 males). The 
difference in the results between trace element contents in the three groups was evaluated by the parametric Student’s t-
test and non-parametric Wilcoxon-Mann-Whitney U-test. In the bone affected by benign GCT the mean mass fractions of 
Ag, Co, Fe, Se, and Zn were significantly higher while the mean mass fraction of Rb was lower than in normal bone 
tissues. In malignant GCT tissue the mean mass fractions of Co, Fe, Sb, and Se were higher while the mean mass 
fraction of Rb was lower than in normal bone tissue. In malignant GCT tissue only the mean mass fractions of Fe and Rb 
were higher and the mean mass fractions of Ag and Zn were lower than in benign GCT tissue. Moreover, many 
correlations between trace elements found in the control group were no longer evident in the neoplastic bone. Thus, 
considerable changes in trace element content and their relationships were found in benign and malignant GCT and 
possible causes and effects of these alterations are discussed.  

Keywords: Trace elements, human bone, benign and malignant giant cell tumor of bone, neutron activation 
analysis. 

1. INTRODUCTION 

Bone tumors are a heterogeneous group of tumors 
that all arise from bone tissue, which consists of 
cartilaginous, osteoid, osseous mineralized and fibrous 
tissue, and bone marrow elements. Each tissue can be 
subject to inflammation, and/or benign or malignant 
tumors. Bone neoplasms are often difficult to detect in 
their early stages because the associated signs and 
symptoms can be nonspecific, insidious in onset, and 
mimic more common disorders [1]. One of the most 
important differential diagnoses is between a benign 
and a malignant neoplasm with similar histology, for 
example, such as giant cell tumor (GCT) of the 
bone [2].  

GCT is a relatively uncommon tumor. It is a 
heterogeneous tumor composed of three different cell 
populations and characterized by the presence of 
multinucleated giant cells (osteoclast-like cells). GCT is 
normally benign with unpredictable behavior including 
malignant transformation [3]. The World Health 
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Organization classifies GCT as “an aggressive, 
potentially malignant lesion” [4]. Identification of 
malignant GCT is a great challenge [2]. GCT of bone 
was first described in 1818 and historically the lesion 
has been referred to by numerous terms, including 
myeloid sarcoma, tumor of myeloplaxus, osteoclas-
toma, and osteoblastoclastoma [5-9]. GCT is a tumor, 
accounting for 4%–9.5% of all primary osseous 
neoplasm and 18%–23% of benign bone neoplasm  
[9, 10]. GCTs predominately arise in long tubular bones 
(75-95%) with most cases (50%–65%) occurring near 
the knee. The next most common site is the distal 
radius (~10%). The epicenter of giant cell tumors is in 
the epiphysis [11, 12]. GCT is typically seen in early 
adulthood, with 80% of cases reported between the 
ages of 20 and 50, with a peak incidence between 20 
and 30 years [9]. GCT may have aggressive features, 
including cortical expansion or destruction with a soft-
tissue component [13]. The prevalence of malignant 
GCT is controversial, although a figure of 5%–10% of 
all GCT appears to be the most frequent consensus [9]. 

All imaging methods such as conventional 
roentgenography, functional nuclear medicine including 
scintigraphy and positron emission tomography, 
computed tomography, and magnetic resonance 
imaging are very important for the assessment of tumor 
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location, shape, size, and infiltration of the adjacent 
tissue. However, clinical imaging and histopathologic 
evaluation of biopsy samples is not useful or practical 
as a routine examination which can be easily used to 
diagnose and to predict the malignant transformation of 
GCT [3]. Thus, the goals of many investigations are to 
assist the clinician in making an appropriate diagnosis 

by providing a rational method of selecting non-
traumatic diagnostic tests that maximize specificity and 
minimize costs. 

It is well known that the tissues of human body differ 
greatly in their proportions of chemical elements and 
that there is the homeostasis of both bulk and trace 
element (TE) contents [14]. Our detailed previous 
studies have confirmed this using a chemical 
composition analysis of bone tissue [15-41]. Thus, it 
can be expected that normal bone and bone tumors, 
possessing very different properties, have specific and 
different TE compositions. Moreover, as was shown by 
us in previous studies in vivo neutron activation 
analysis allows determination of some chemical 
element contents in intact bone, benign and malignant 
lesions of bone and has a potential to become a 
valuable diagnostic tool [17,18,20,42]. 

To our knowledge, no data are available for the TE 
contents of GCT, to permit distinction between benign 
and malignant tumor. 

This work had three aims. The first was to obtain 
reliable data for silver (Ag), cobalt (Co), chromium (Cr), 
iron(Fe), mercury (Hg), rubidium (Rb), antimony (Sb), 
selenium (Se), and zinc (Zn) contents in three groups 
of bone tissue samples – intact bone, benign GCT and 
malignant GCT using non-destructive instrumental 
neutron activation analysis with high resolution 
spectrometry of long-lived radionuclides (INAA-LLR). 
The second aim was to compare the TE contents in the 
different groups of samples and the third was to 
calculate inter-correlations between TE contents in 
each group of bone tissue samples. 

All studies were approved by the Ethical Committee 
of the Medical Radiological Research Center, Obninsk. 

2. MATERIAL AND METHODS 

2.1. Sample Preparation 

Forty-seven children, adolescents and adults were 
included in this study. The subjects were divided into 
three groups: controls (1), benign GCT (2) and 
malignant GCT (3). The reference/control group 
consisted of 27 persons with intact bone (12 females 

and 15 males, aged from 16 to 49 years, 
mean±standard deviation, M±SD, 34±11 years) who 
had died from various non bone related causes, mainly 
unexpected from trauma. The intact bone samples 
mainly of femur and tibia were collected at the 
Department of Pathology, Obninsk City Hospital. 
Samples from 10 patients with benign GCT (4 females 
and 6 males aged from 15 to 47 years, M±SD 24±13 
years) and 10 patients with malignant GCT (4 females 
and 6 males, aged from 14 to 56 years, M±SD 27±15 
years) were obtained from open biopsies or after 
operation from resected specimens. All patients with 
bone diseases were hospitalized at the Medical 
Radiological Research Centre. In all cases the 
diagnosis was confirmed by clinical and histological 
data. 

A titanium tool was used to cut and to scrape 
samples [43,44]. All bone and tumor tissue samples 
were freeze dried, until constant mass was obtained, 
and homogenized. Then samples weighing about 50-
100 mg were wrapped separately in high-purity 
aluminum foil washed with rectified alcohol beforehand 
and placed in a nitric acid-washed quartz ampoule. 

2.2. Instrumentation and Method 

To determine contents of the elements by 
comparison with a known standard, biological synthetic 
standards (BSS) prepared from phenol–formaldehyde 
resins and aliquots of commercial, chemically pure 
compounds were used. Corrected certified values of 
BSS element contents were reported by us earlier 
[45,46]. Ten certified reference material (CRM) IAEA H-
5 (Animal Bone) sub-samples and ten standard 
reference material (SRM) NIST 1486 (Bone Meal) sub-
samples weighing about 100 mg were analyzed in the 
same conditions as bone and tumor samples to 
estimate the precision and accuracy of the results. 

A vertical channel of the WWR-c research nuclear 
reactor was applied to determine the mass fraction of 
Ag, Co, Cr, Fe, Hg, Rb, Sb, Se, and Zn by INAA-LLR. 
The quartz ampoule with bone samples, tumor 
samples, standards, CRM, and SRM was soldered, 
positioned in a transport aluminum container and 
exposed to a 100-hour neutron irradiation in a vertical 
channel with a thermal neutron flux about  
1013n⋅cm-2⋅s-1. Two months after irradiation the samples 
were reweighed and repacked. The duration of each 
measurement was from 1 to 10 hours. To reduce the 
high intensity of 32P β-particles (T1/2=14.3 d) 
background, a berillium filter was used. A coaxial 
98cm3 Ge (Li) detector and a spectrometric unit (NUC 
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8100, Hungary), including a PC-coupled multichannel 
analyzer, were used for measurements. The 
spectrometric unit provided 2.9 keV resolution at the 
60Co 1332 keV line. Information concerning the nuclear 
 

reactions, radionuclides and gamma-energies 
employed, together with other details of the analysis 
including the quality control of results were reported by 
us previously [34,36,37,46]. 

Table 1: INAA Data of Trace Elements of CRM IAEA H-5 Animal Bone and SRM NIST 1486 Bone Meal (mg/kg on dry 
mass basis) 

Element CRM IAEA H-5 This work results SRM NIST 1486 This work results 

 Mean Type Mean±SD Mean Type Mean±SD 

Ag - - <0.002 DL - - <0.002 DL 
Co 0.25 N 0.56±0.25 - - 0.11±0.02 
Cr 2.56 N <0.8 DL - - ≤0.9 
Fe 79±11 C 85±17 99±8 C 93±11 
Hg 0.008 N ≤0.01 - - ≤0.01 
Rb 1.07 N ≤1.0 - - ≤0.9 
Sb 0.024 N ≤0.02 - - ≤0.02 
Se 0.054 N ≤0.05 0.13 N ≤0.05 
Zn 89±15 C 86±7 147±16 C 153±29 

M – arithmetic mean, SD – standard deviation, C – certified values, N – non-certified values. 
 

Table 2: Basic Statistical Parameters for Al, Co, Cr, Fe, Hg, Rb, Sb, Se, and Zn Mass Fractions (mg/kg, dry mass 
basis) in Tissue of Intact Bone (N), benign (bGCT) and Malignant Giant Cell Tumor (mGCT) 

Element M SD SEM Min Max Med P0.025 P0.975 

Intact bone (N), n=27 

Ag 0.00274 0.00152 0.00051 0.000256 0.00468 0.00282 0.000320 0.00458 
Co 0.0107 0.0070 0.0014 0.00370 0.0345 0.00785 0.00464 0.0288 
Cr 0.274 0.182 0.057 0.110 0.669 0.202 0.117 0.629 
Fe 51.2 46.3 9.3 9.20 173 30.2 9.68 155 
Hg 0.0057 0.0044 0.0014 0.00100 0.0138 0.00525 0.00100 0.0133 
Rb 3.68 1.58 0.48 0.970 6.57 3.30 1.40 6.41 
Sb 0.0151 0.0102 0.0032 0.00600 0.0420 0.0139 0.00600 0.0364 
Se 0.176 0.092 0.029 0.0550 0.358 0.169 0.0633 0.336 
Zn 80.6 15.4 3.0 45.4 115 82.1 51.7 109 

Benign giant cell tumor (bGCT), n=10 
Ag 0.00449 0.00126 0.00045 0.00180 0.00590 0.00450 0.00219 0.00585 
Co 0.0341 0.0190 0.0063 0.00300 0.0608 0.0308 0.00558 0.0599 
Cr 0.320 0.223 0.074 0.0560 0.761 0.224 0.0758 0.719 
Fe 353 128 43 155 606 353 172 577 
Hg 0.00554 0.00284 0.00095 0.000800 0.00910 0.00610 0.000940 0.00904 
Rb 1.17 2.14 0.71 0.17 6.55 0.17 0.17 5.71 
Sb 0.031 0.034 0.011 0.00300 0.0973 0.0179 0.00426 0.0942 
Se 1.51 0.96 0.32 0.373 3.21 1.51 0.410 3.02 
Zn 115.4 23.5 7.8 64.5 140 119 71.5 139 

Malignant giant cell tumor (mGCT), n=10 
Ag 0.00178 0.00189 0.00067 0.000200 0.00500 0.000785 0.000219 0.00484 
Co 0.0365 0.0184 0.0065 0.0200 0.0780 0.0328 0.0202 0.0714 
Cr 0.420 0.283 0.100 0.114 0.914 0.387 0.120 0.864 
Fe 640 410 145 118 1362 559 148 1291 
Hg 0.0077 0.0046 0.0017 0.00180 0.0167 0.00745 0.00225 0.0155 
Rb 2.17 1.52 0.54 0.170 4.06 2.06 0.170 4.04 
Sb 0.0328 0.0184 0.0065 0.0160 0.0620 0.0259 0.0164 0.0617 
Se 1.84 0.88 0.31 0.730 3.14 1.77 0.784 3.11 
Zn 65.6 38.0 13.4 20.6 127 59.6 22.8 124 

M – arithmetic mean, SD – standard deviation, SEM – standard error of mean, Min –minimum value, Max – maximum value, Med – median, P0.025 – percentile with 
0.025 level, P0.975 – percentile with 0.975 level. 
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2.3. Computer Programs and Statistic 

A dedicated computer program of INAA mode 
optimization was used [47]. Using the Microsoft Office 
Excel software, the following quantities of statistics, 
arithmetic mean, standard deviation, standard error of 
mean, minimum and maximum values, median, 
percentiles with 0.025 and 0.975 levels were calculated 
for the TE mass fractions. The differences in the results 
between intact bone, benign GCT and malignant GCT 
were evaluated using the parametric Student’s t-test 
and non-parametric Wilcoxon-Mann-Whitney U-test. 
For the estimation of the Pearson correlation coefficient 
between different pairs of the TE mass fractions in 
each group of bone and tumor tissue samples the 
Microsoft Office Excel software was also used. 

3. RESULTS 

Table 1 depicts our data for nine TE mass fractions 
determined by INAA-LLR in ten sub-samples of CRM 
IAEA H-5 Animal Bone and SRM NIST 1486 Bone 
Meal reference material and the certified values of this 
material. 

Table 2 presents certain statistical parameters 
(arithmetic mean, standard deviation, standard error of 
mean, minimal and maximal values, median, 
percentiles with 0.025 and 0.975 levels) of the Ag, Co, 
Cr, Fe, Hg, Rb, Sb, Se, and Zn mass fractions in the 
samples of intact bone, benign GCT and malignant 
GCT. 

Information concerning the effect of benign or 
malignant transformation on the TE mass fractions in 
bone is presented in Table 3. 

Table 3: Differences between Mean Values (M±SEM) of Al, Co, Cr, Fe, Hg, Rb, Sb, Se, and Zn Mass Fractions (mg/kg, 
dry mass basis) in Tissue of Intact Bone (N), Benign (bGCT) and Malignant Giant Cell Tumor (mGCT) 

Groups of samples Element Norm (N) Benign GCT 
(bGCT) 

t-test 
p≤  

U-test 
 p 

Ratio 
bGCT/N 

Ag 0.00274±.00051 0.00449±0.00045 0.010 ≤0.01 1.64 
Co 0.0107±0.0014 0.0341±0.0063 0.006 ≤0.01 3.19 
Cr 0.274±0.057 0.320±0.074 0.627 >0.05 1.17 
Fe 51.2±9.3 353±43 0.00008 ≤0.01 6.89 
Hg 0.0057±0.0014 0.00554±0.00095 0.914. >0.05 0.97 
Rb 3.68±0.48 1.17±0.71 0.011 ≤0.01 0.32 
Sb 0.0151±0.0032 0.031±0.011 0.224 >0.05 2.05 
Se 0.176±0.029 1.51±0.32 0.003 ≤0.01 8.58 

bGCT  
and 
N 

Zn 80.6±3.0 115.4±7.8 0.002 ≤0.01 1.43 
Groups of samples Element Norm (N) Malignant GCT (mGCT) t-test p≤ U-test p Ratio mGCT/N 

Ag 0.00274±.00051 0.00178±0.00067 0.254 >0.05 0.65 
Co 0.0107±0.0014 0.0365±0.0065 0.005 ≤0.01 3.41 
Cr 0.274±0.057 0.420±0.100 0.229. >0.05 1.53 
Fe 51.2±9.3 640±145 0.005 ≤0.01 12.5 
Hg 0.0057±0.0014 0.0077±0.0017 0.352 >0.05 1.35 
Rb 3.68±0.48 2.17±0.54 0.052 ≤0.01 0.59 
Sb 0.0151±0.0032 0.0328±0.0065 0.034 ≤0.01 2.17 
Se 0.176±0.029 1.84±0.31 0.001 ≤0.01 10.5 

mGCT  
and 
N 

Zn 80.6±3.0 65.6±13.4 0.309  >0.05 0.81 

Groups of samples Element Benign GCT 
(bGCT) 

Malignant GCT 
(mGCT) 

t-test 
p≤ 

U-test 
p 

Ratio 
mGCT/bGCT 

Ag 0.00449±0.00045 0.00178±0.00067 0.005 ≤0.01 0.40 
Co 0.0341±0.0063 0.0365±0.0065 0.728 >0.05 1.07 
Cr 0.320±0.074 0.420±0.100 0.437 >0.05 1.31 
Fe 353±43 640±145 0.093 ≤0.05 1.81 
Hg 0.00554±0.00095 0.0077±0.0017 0.248 >0.05 1.39 
Rb 1.17±0.71 2.17±0.54 0.283 ≤0.05 1.85 
Sb 0.031±0.011 0.0328±0.0065 0.863 >0.05 1.06 
Se 1.51±0.32 1.84±0.31 0.463 >0.05 1.22 

mGCT  
and 

bGCT 

Zn 115.4±7.8 65.6±13.4 0.008 ≤0.01 0.57 

M – arithmetic mean, SEM – standard error of mean, t-test - parametric Student’s t-test, U-test - non-parametric Wilcoxon-Mann-Whitney test, Statistically significant 
values are in bold. 
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The data for inter-correlation calculations (values of 
r–coefficient of correlation) including all pairs of the TE 
identified by us in the samples of intact bone, benign 
GCT and malignant GCT are shown in Table 4. 

4. DISCUSSION 

The non-destructive INAA-LLR was used in this 
research study because this method has many definite 
advantages over other analytical methods, particularly, 
in the clinical chemistry. For example, after non-
destructive INAA-LLR there is a possibility to check the 
results for some TE and to receive additional 
information about other TE contents by destructive 
analytical methods such as atomic absorption 

spectrometry, inductively coupled plasma atomic 
emission spectrometry, inductively coupled plasma 
mass spectrometry and so on, using the same bone 
samples. Moreover, if a deep-cooled channel of 
nuclear reactor is available, the non-destructive INAA-
LLR allows determining TE contents in the fresh 
bone/tumor samples and combining TE study with 
histological investigation. It is also necessary to keep in 
mind that the non-destructive methods are the current 
gold-standard solution to control destructive analytical 
techniques [14]. The destructive analytical methods are 
based on measurements of processed tissue. In such 
studies tissue samples are ashed and/or acid digested 
before analysis. There is evidence that certain 
quantities of TE are lost as a result of such treatment 

 Table 4: Intercorrelations of Pairs of the Trace Element Mass Fractions in Tissue of Intact Bone, Benign and 
Malignant Giant Cell Tumor 

Tissue  Element Co Cr Fe Hg Rb Sb Se Zn 

Intact Ag -0.23 0.51 -0.80b -0.02 0.62a 0.31 -0.45 0.38 

bone Co 1.00 0.16 0.55a 0.79b -0.10 0.08 0.52 0.17 

n=27 Cr 0.16 1.00 -0.48 0.51 0.56a  -0.31 -0.08 0.46 

 Fe 0.55a -0.48 1.00 0.09 -0.54 -0.25 0.60a -0.17 

 Hg 0.79b 0.51 0.09 1.00 0.18 -0.13 0.35 -0.14 

 Rb -0.10 0.56a -0.54 0.18 1.00 -0.05 -0.06 0.34 

 Sb 0.08 -0.31 -0.25 -0.13 -0.05 1.00 0.04 0.22 

 Se 0.52 -0.08 0.60a 0.35 -0.06 0.04 1.00 0.24 

 Zn 0.17 0.46 -0.17 -0.14 0.34 0.22 0.24 1.00 

bGCT Ag -0.35 -0.82b 0.23 0.27 -0.80b -0.55a 0.18 -0.23 

n=10 Co 1.00 0.18 -0.30 0.12 -0.01 0.67a 0.19 -0.47 

 Cr 0.18 1.00 -0.60a -0.47 0.85b 0.01 0.02 0.14 

 Fe -0.30 -0.60a 1.00 0.47 -0.53 0.10 0.26 0.39 

 Hg 0.12 -0.47 0.47 1.00 -0.55 0.31 0.50 -0.11 

 Rb -0.01 0.85b -0.53 -0.55 1.00 -0.12 0.09 0.12 

 Sb 0.67a 0.01 0.10 0.31 -0.12 1.00 -0.08 -0.39 

 Se 0.19 0.02 0.26 0.50 0.09 -0.08 1.00 0.35 

 Zn -0.47 0.14 0.39 -0.11 0.12 -0.39 0.35 1.00 

mGCT Ag -0.13 -0.08 0.13 -0.18 -0.01 -0.08 -0.57a -0.30 

n=10 Co 1.00 0.30 0.75a 0.73a 0.02 0.35 0.56a 0.67a 

 Cr 0.30 1.00 0.31 -0.16 -0.07 0.24 0.52 -0.03 

 Fe 0.75a 0.31 1.00 0.52 -0.34 0.04 0.46 0.10 

 Hg 0.73a -0.16 0.52 1.00 0.33 -0.23 0.54 0.57a 

 Rb 0.02 -0.07 -0.34 0.33 1.00 0.24 0.29 0.37 

 Sb 0.35 0.24 0.04 -0.23 0.24 1.00 0.10 0.74a 

 Se 0.56a 0.52 0.46 0.54 0.29 0.10 1.00 0.27 

 Zn 0.67a -0.03 0.10 0.57a 0.37 0.74a 0.27 1.00 

bGCT – benign giant cell tumor of bone, mGCT – malignant giant cell tumor of bone, statistically significant difference: a - p≤0.05, b - p≤0.01, c - p≤0.001. 
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[14,44,48]. There is no doubt that every method 
available for the measurement of TE contents in bone 
and tumor samples can be used. However, when using 
destructive analytical methods it is necessary to control 
for the losses of TE, for complete acid digestion of the 
sample, and for the contaminations by TE during 
sample decomposition, which needs adding some 
chemicals. 

The results of mean values for Fe and Zn - two 
representative TE of CRM IAEA H-5 (Animal Bone) and 
SRM NIST1486 (Bone Meal) were in the range of 95% 
confidence interval (M±2SD) of the certificates’ values 
(Table 1). Good agreement with the certified data of 
CRM and SRM for Fe and Zn mass fractions 
determined by INAA-LLR indicate an acceptable 
accuracy and for other TE mass fractions obtained in 
the study of intact bone and tumor tissue samples 
presented in Tables 2-4. 

The mean values and all selected statistical 
parameters were calculated for nine TE (Ag, Co, Cr, 
Fe, Hg, Rb, Sb, Se, and Zn) mass fractions (Table 2). 
The mass fraction of these TE mass fraction were 
measured in all, or a major portion of normal bone, 
benign GCT and malignant GCT samples. 

From Table 3 it is observed that in the benign GCT 
tissue the mean mass fractions of Ag, Co, Fe, Se, and 
Zn are respectively 1.6, 3.2, 6.9, 8,6, and 1.4 times 
higher and the mean mass fraction of Rb is almost 3 
times lower than in normal bone tissues. In malignant 
GCT tissue the mean mass fractions of Co, Fe, Sb, and 
Se are respectively 3.4, 12.5, 2.2, and 10.5 times 
higher and the mean mass fraction of Rb is 41% lower 
than in normal bone tissues. In malignant GCT tissue 
only the mean mass fractions of Fe and Rb are 
significantly higher (1.8 and 1.9 times, respectively) 
and the mean mass fractions of Ag and Zn some lower 
(60% and 43%, respectively) than in benign GCT 
tissue. 

In the control group a statistically significant direct 
correlation was found between the Ag and Rb (r = 0.62, 
p ≤0.05), Co and Fe (r = 0.55, p≤0.01), Co and Hg (r = 
0.79, p ≤0.01), Cr and Rb (r = 0.56, p ≤0.05), and 
between Fe and Se (r = 0.60, p ≤0.05) mass fractions 
(Table 4). In the same group a pronounced inverse 
correlation was observed between the Fe and Ag (r = - 
0.80, p ≤0.05). If some positive correlations between 
the TE were predictable (e.g., Fe–Co), the 
interpretation of other observed relationships requires 
further study for a more complete understanding. 

In the benign GCT tissue many significant 
correlations between TE found in the control group are 
no longer evident, for example, direct correlation 
between Fe and Co or between Fe and Se, etc. 
(Table 4). However, direct correlations between Co and 
Sb (r = 0.67, p ≤0.05) and Cr and Rb (r = 0.85, p 
≤0.01), as well as inverse correlation between Ag and 
Cr (r = -0.82, p ≤0.01), Ag and Rb (r = -0.80, p ≤0.01), 
Ag and Sb (r = -0.55, p ≤0.05), and also Cr and  
Fe (r = -0.60, p ≤0.05) were observed (Table 4). 

Similarly, in the malignant GCT tissue many 
significant correlations between TE found in the control 
group are also no longer evident, for example, direct 
correlation between Fe and Se, etc. (Table 4). 
However, direct correlations between Co and Fe (r = 
0.75, p ≤0.05), Co and Hg (r = 0.73, p ≤0.05), Co and 
Se (r = 0.56, p ≤0.05), Co and Zn (r = 0.67, p ≤0.05), 
Zn and Hg (r = 0.57, p ≤0.05), and also Zn and Sb (r = 
0.74, p ≤0.05), as well as inverse correlation between 
Ag and Se (r = -0.57, p ≤0.05) were observed  
(Table 4). 

Thus, if we accept the levels and relationships of TE 
mass fraction in the intact bone samples of control 
group as a norm, we have to conclude that with a 
tumor transformation the levels and relationships of TE 
in bone significantly change. No published data 
referring to contents of TE or correlations between TE 
mass fractions in the benign and malignant GCT of 
bone were found. 

Characteristically, elevated or reduced levels of TE 
observed in cancerous tissues are discussed in terms 
of their potential role in the initiation and promotion of 
cancer. In other words, using the low or high levels of 
the TE in cancerous tissues researchers try to 
determine the carcinogenic role of the deficiency or 
excess of each TE in investigated organ. In our 
opinion, abnormal levels of many TE in tumor could be 
and cause, and also effect of malignant transformation. 
From the results of such kind studies, it is not always 
possible to decide whether the measured decrease or 
increase in TE level in pathologically altered tissue is 
the reason for alterations or vice versa. 

Bone is a mineralized connective tissue. It is formed 
by osteoblasts, that deposit collagen and release Ca, 
Mg, and phosphate ions that combine chemically within 
the collagenous matrix into a crystalline mineral, known 
as bone hydroxyapatite. On average, bone tissue 
contains about 10-25% water, 25% protein fibers like 
collagen, and 50% hydroxyapatite Ca10(PO4)6(OH)2. 
Many TE are bone-seeking elements and they are 
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closely associated with hydroxyapatite [36,37,40]. 
Benign and malignant GCT is classified as a bone 
tumor. Our previous findings showed that the means of 
the Ca and P mass fraction in the benign and 
malignant GCT of bone tissue are lower than in normal 
bone, but the mean of Ca/P ratio is similar [49]. It 
suggested that GCT continues to form bone 
hydroxyapatite but to a lesser degree than normal 
bone. 

Silver: Ag is a TE with no recognized trace metal 
normal physiological function in the human body [50]. 
Ag in metalic form and inorganic Ag compounds ionize 
in the presence of water, body fluids or tissue 
exudates. The silver ion Ag+ is biologically active and 
readily interacts with proteins, amino acid residues, 
free anions and receptors on mammalian and 
eukaryotic cell membranes [51]. Besides such 
interactions, chronic exposure to Ag causes a 
permanent bluish-gray discoloration of the skin 
(argyria) or of the sclera (argyrosis). Exposure to 
soluble Ag compounds may produce other toxic effects, 
including liver and kidney damage, irritation of the 
eyes, skin, respiratory, and intestinal tract, and 
changes in blood cells [52]. More detailed knowledge of 
Ag toxicity can lead to a better understanding of its 
impact on human health, including bone conditions. 
Why there is Ag accumulation by benign GCT tissue is 
not completely understood and requires further studies. 
In any case an elevated level of Ag in benign GCT, in 
comparison with normal bone and malignant GCT, 
could possibly be explored to aid a differential 
diagnosis between benign and malignant GCT. 

Cobalt: Health effects of high exposure to Co, 
whether resulting from occupational, environmental, 
dietary and medical contact are characterized by a 
complex clinical syndrome, including mainly 
neurological, cardiovascular and endocrine deficits 
[53,54]. Co is genotoxic and carcinogenic. This is 
mainly caused by oxidative DNA damage by reactive 
oxygen species (ROS), perhaps combined with 
inhibition of DNA repair [55]. Indeed, Co ions affect 
osteoblast proliferation, size, and shape. Co ions also 
promote secretion of cytokines from osteoblasts, which 
leads to inflammation and osteoclast differentiation, 
maturation, and stimulation [56]. Thus, a carcinogenic 
effect of elevated Co level in benign and malignant 
GCT tissue may be assumed. It was found in the 
present study, that there is a direct correlation between 
Fe and Co levels in normal bone and malignant GCT 
tissue (Table 4). Therefore an increased level of Co in 
both benign and malignant GCT is closely connected to 

a very high Fe content in tumor tissue (Table 3). 
Anyway, the accumulation of Co in benign and 
malignant GCT tissue could possibly be explored as a 
diagnostic marker for GCT. 

Iron: Our findings show that the mean of the Fe 
mass fractions in the benign and malignant GCT tissue 
samples were respectively 6.9 and 12.5 times greater 
than in normal bone tissues (Table 3). It is well known 
that the Fe mass fraction in a tissue sample depends 
mainly on the blood volume in that tissue. Thus, one 
can speculate that benign and malignant GCT are 
characterized by an increase of the mean values of the 
Fe mass fractions because its levels of tumor 
vascularization are higher than that of normal bone. 
Moreover, one can deduce that the level of malignant 
GCT vascularization is almost 2 times higher than that 
of benign GCT. Thus, this difference could possibly be 
explored to aid the diagnosis of GCT malignancy. 

Rubidium: There is very little information about the 
effects of Rb in organisms. No negative environmental 
effects have been reported. Rb is only slightly toxic on 
an acute toxicological basis and would pose an acute 
health hazard only when ingested in large quantities 
[57]. Rb has some function in immune responce [58], 
probably by supporting cell differentiation [59]. The 
reason for a lower level of Rb in benign and malignant 
GCT tissue than that in normal bone is not completely 
understood and requires further studies. 

Selenium: In the benign and malignant GCT tissue 
the mean Se mass fractions were respectively 8.6 and 
10.5 times 11.0 times higher than in normal bone 
(Table 3). A high Se level was reported in malignant 
tumors of the ovary [60], lung [61], prostate [62-70], 
breast [71,72], gastro intestinal tract [73], and also in 
cancers of the stomach [73] and thyroid [75]. Moreover, 
in our previous study elevated levels of Se were found 
in such malignant tumors of bone as osteogenic 
sarcoma [76], chondrosarcoma [77], and Ewing's 
sarcoma [78]. The role played by Se in those tumors 
remains unknown, but in general it is accepted that 
certain proteins containing Se can mediate the 
protective effects against oxidative stress. A literature-
based analysis found the association of malignant 
tissue transformation with local oxidative stress. 
Studies have shown that oxidative stress conditions 
play an important role in both the initiation and the 
progression of cancer by regulating molecules such as 
DNA, enhancers, transcription factors, and cell cycle 
regulators [79]. However the cause of increased Se in 
cancerous tissue and particularly in benign and 
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malignant GCT of bone is not completely understood 
and requires further studies. However the great 
accumulation of Se in benign and malignant GCT 
tissue could possibly be explored to aid the diagnosis 
of GCT. 

Antimony: Animal carcinogenicity data were 
concluded sufficient for Sb [80]. Possible mechanisms 
of Sb’s action include its potential to produce active 
ROS and to interfere with the DNA repair system [80]. 
The cause of Sb accumulation by malignant GCT 
tissue is not completely understood and requires 
further studies. An elevated level of Sb in malignant 
GCT in comparison with normal bone and benign GCT 
could possibly be explored for aid in making the 
differential diagnosis between benign and malignant 
GCT. 

Zinc: Zn is active in more than 300 proteins and 
over 100 DNA-binding proteins, including the tumor 
suppressor protein p53, a Zn-binding transcription 
factor acting as a key regulator of cell growth and 
survival after various forms of cellular stress. p53 is 
mutated in half of human tumors and its activity is 
tightly regulated by metals and redox mechanisms. Zn 
ions are cofactors of the superoxide dismutase 
enzymes, which prevent the onset and progression of 
tumors through cell protection against substances that 
cause the formation of free radicals and ROS. The role 
of zinc is to act as a membrane stabilizer and to 
participate in antioxidative protection and oxidative 
stress inhibition. 

A low level of Zn was reported in malignant tumors 
of liver [81,82,83], kidney [81], uterus [84], lung [83,85], 
prostate [63-70,83,86-89], stomach [90], testis [90], 
thyroid [75,83,89,90] and in esophageal squamous cell 
cancer [91]. On the one hand, these facts imply that 
reduced Zn content in tumors is probably one of the 
factors in the etiology of malignant transformation of 
different tissues, because Zn deficiency has been 
linked to severe deficiency in immune function and 
disruption in T-Cell function. Zn deficiency also causes 
inactivation of p53, a tumor suppressor protein, which 
has been associated with many cancers [90]. On the 
other hand, it is possible to interpret the low levels of 
Zn in malignant GCT tissue as follows. Zn is a bone-
seeking TE and its content in bone tissue is closely 
associated with that of hydroxyapatite [40]. Our 
previous findings showed that hydroxyapatite content 
of malignant GCT tissue is significantly lower than in 
normal bone [49]. Thus, bone tissue may lose Zn 
during malignant transformation. A reduced level of Zn 

in malignant GCT in comparison with benign GCT 
could possibly be explored as a means of differential 
diagnosis between these benign and malignant tumors. 

Trace element inter-correlations: Each of the TE is 
distinct in its primary mode of action. Moreover, there 
are several forms of synergistic action of the TE as a 
part of intracellular metabolism, during which several 
reactive intermediates and byproducts are created [92-
94]. These reactive species are capable of potent and 
surprisingly selective activation of stress-signaling 
pathways, inhibition of DNA metabolism, repair, and 
formation of DNA crosslinks, which are known to 
contribute to the development of human cancers 
[93,95]. Thus, in addition to TE contents changes of TE 
relationships (inter-correlations) might be involved in 
etiology and pathophysiology of bone tumors. 

Limitations: This study has several limitations. 
Firstly, analytical techniques employed in this study 
measure only nine TE (Ag, Co, Cr, Fe, Hg, Rb, Sb, Se, 
and Zn) mass fractions. There are many other TE 
associated with different levels of oxidative stress and 
carcinogenesis. Thus, future studies should be directed 
toward using other analytical methods which will extend 
the list of TE investigated in normal bone as well as in 
the benign and malignant GCT of bone. Secondly, the 
sample size of benign GCT and malignant GCT groups 
was relatively small. Despite these limitations, this 
study provides evidence that the levels of Ag, Co, Fe, 
Rb, Sb, Se, and Zn mass fractions have altered in GCT 
tumors and shows the necessity to continue TE 
research of benign and malignant bone GCT. 

CONCLUSION 

INAA-LLR is a most satisfactory analytical tool to 
determine non-destructively the elemental content of 
Ag, Co, Cr, Fe, Hg, Rb, Sb, Se, and Zn in samples of 
human intact bone and also in samples of benign and 
malignant GCT. In the bone affected by benign GCT 
the mean mass fractions of Ag, Co, Fe, Se, and Zn 
were significantly higher while the mean mass fraction 
of Rb was lower than in normal bone tissues. In 
malignant GCT tissue the mean mass fractions of Co, 
Fe, Sb, and Se were higher while the mean mass 
fraction of Rb was lower than in normal bone tissues. In 
malignant GCT tissue only the mean mass fractions of 
Fe and Rb were higher and the mean mass fractions of 
Ag and Zn were lower than in benign GCT tissue. In 
addition, in the tumor transformed bone many inter-
correlations between TE contents found in the control 
group were no longer evident in the GCT groups. Thus, 
if we accept the levels and relationships of TE mass 
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fraction in the intact bone as a norm, we have to 
conclude that in benign and malignant GCT tissues the 
TE homeostasis was significantly disturbed. The 
studies on the role of TE in the etiology and 
pathogenesis of benign and malignant GCT should be 
continued, because of the limitations of numbers of 
different TEs studied in this work and to determine 
relevant mechanisms which may explain the findings. 
This paper has only considered two specific bone 
neoplasms. However the value of this approach to the 
determination of the malignant or benign nature of a 
tumor using TE analysis has been confirmed. It is likely 
to have many other useful applications and deserves to 
be included in the diagnostician’s armamentarium after 
appropriate experimental confirmation. 
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BSS=  Biological synthetic standards, 
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