
 International Journal of Orthopedics and Rehabilitation, 2020, 7, 1-11 1 

 
 E-ISSN: 2313-0954/20  © 2020 Savvy Science Publisher 

Automatic Measurement of Subregional Vertebral Bone Mineral 
Density via Deep Learning of Quantitative Computed Tomography 
Images 

Chentian Li1,2,3,#, Chi Ma1,2,#, Xianglong Zhuo4,#, Wei Wang1, Li Li2,4, Wing-Yuk Ip2, Bing Li4, 
Tao Li4, Songjian Li3, Feng Zhu1,2,* and William W. Lu1,2,5,* 

1Department of Orthopaedics, & Department of Radiology, the University of Hong Kong-Shenzhen Hospital, 
Shenzhen, Guangdong, P.R. China  
2Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 
Hong Kong SAR, P.R. China 
3Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. 
China 
4Department of Orthopaedics, & Department of Radiology, Liuzhou Worker’s Hospital, Guangxi Medical 
University, Liuzhou, Guangxi, P.R. China 
5Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced 5 Technology, 
Chinese Academy of Science, Shenzhen, Guangdong, P.R. China 

Abstract: Background: Measurement of subregional Bone Mineral Density (BMD) of the vertebral body has been shown 
to hold a critical role in osteoporotic fracture risk analysis. The reproducibility and precision of the measurement rely 
highly on the vertebral body region of interest segmentation accuracy, which requires expert-level experience in medical 
image preprocessing and is time-consuming work. The establishment of a reliable automatic method could enhance the 
efficiency and precision of these measurements in clinical practice. 

Purpose: To develop and validate a deep learning-based segmentation approach for subregional vertebral BMD 
measurement with quantitative CT scans. 

Materials and Methods: Quantitative CT images from 115 subjects (62 women and 53 men with a mean age of 66.4 ± 
13.4 years) were retrospectively collected. A deep learning-based segmentation pipeline was trained on a total of 403 
manual segmented lumbar vertebral bodies. The performance was evaluated by its accuracy, Dice Score, and 
Intersection over Union (IoU) score. A scan-rescan test was performed to evaluate the subregional BMD measurement 
reliability and reproducibility by analyzing the intraclass correlation coefficient and Bland-Altman analysis. 

Results: This automatic approach achieved high segmentation performance for the entire vertebral body segmentation 
(accuracy 0.98 ± 0.02, dice coefficient 0.92 ± 0.06, and IoU 0.87 ± 0.09), cortical bone segmentation (accuracy 0.95 ± 
0.02, dice coefficient 0.92 ± 0.03, and IoU 0.85 ± 0.05), and endplate segmentation (accuracy 0.89 ± 0.05 and Dice 
coefficient 0.75 ± 0.09, IoU 0.61 ± 0.12). The scan-rescan test further showed the automatic measurement is highly 
reproducible (r = 0.96, limit of agreement [LoA] = −20.4~17.9 mg/cm3 for entire region; r = 0.95, LoA = −39.5~33.3 
mg/cm3 for cortical region; r = 0.89, LoA = −23.4~20.9 mg/cm3 for cancellous region; r = 0.82, LoA = −44.9~58.9 
mg/cm3 for superior endplate; r = 0.63, LoA = −81.6~106.5 mg/cm3, respectively). 

Conclusion: The deep learning-based approach is feasible for vertebral body subregions segmentation, which ensures 
the precision and reproducibility of BMD measurement. The cortical and cancellous BMD can be separately measured 
by the deep learning-based approach, providing an automatic and reliable framework for the investigation of subregional 
osteoporosis changes with Quantitative Computed Tomography (QCT) spine scans. 

Keywords: Bone mineral density, Spine imaging, Deep learning, Atlas-based segmentation, Quantitative computed 
tomography. 

1. INTRODUCTION 

Identification of the vertebral body region of interest 
and the standardization of imaging analysis protocols 
with automatic approaches are important for the 
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improvement of bone mineral density (BMD) 
measurement precision for osteoporosis assessment 
[1-3]. Conducting the analysis steps automatically 
could standardize the measurement and reduce 
interobserver errors from manual manipulation. For 
computer-assisted spine image analysis, most of the 
previous studies addressed the entire vertebrae 
segmentation and achieved high accuracy on the fully 
automatic segmentation tasks [4]. 
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However, the task for vertebral osteoporosis 
assessment needs more mechanisms than solely the 
overall vertebral region segmentation. Since the 
cortical bone, the bony layer of endplates, and the 
cancellous bone have unique structural designs, the 
different subregions of the vertebral body have different 
fracture resistance capacity [5-7]. The accurate 
segmentation of those structures as separate 
compartments is crucial for the localized osteoporosis 
changes assessment and finite-element modeling  
[8, 9]. 

To date, the previously reported automatic 
segmentation solutions were only concerned with 
separating the entire vertebral region from other 
tissues. The automatic strategy for vertebra subregions 
(cortical bone, cancellous bone, and the bony layer of 
endplates) segmentation is rarely discussed [10]. 
Besides, since the clinical CT images are usually in low 
spatial resolutions, it makes the manual segmentation 
of vertebral subregions more challenging [9]. To 
achieve better performance on cortical bone and 
trabecular bone segmentation, the image analysis 
techniques, including image deblurring [11, 12] and 
cortical bone thickness estimation [13, 14] were 
proposed. However, a thoroughly designed automatic 
approach for vertebral subregions segmentation has 
not yet been developed for subregional vertebral BMD 
measurement using quantitative computed tomography 
(QCT). 

In this study, we aimed to design an automatic 
pipeline for subregional vertebral BMD measurement 
based on a deep learning framework with a coarse-to-
fine-grained attention strategy. The newly developed 
pipeline adopted hybrid strategies from state-of-the-art 
methods and was further optimized for vertebra 
subregions segmentation in QCT images. Furthermore, 
the reproducibility and precision of subregional BMD 
measurements based on this pipeline were validated. 

2. MATERIALS AND METHODS 
2.1. Data Selection and Study Design 

The spine quantitative CT images were 
retrospectively reviewed after full institutional review 
board approval. Due to the retrospective nature of the 
study, the need for individual patient consent was 
waived. Patients of 20 years or older were selected. To 
generalize the application scenario, subjects with both 
healthy spines and those with vertebral body fractures 
were collected. In total, 57 subjects (24 women and 33 
men with a mean age of 62.1 ± 15.4 years) with no 

finding of vertebral body fracture, and 58 subjects (38 
women and 20 men with a mean age of 70.7 ± 9.5 
years) with vertebral body fracture prevalence were 
collected. To measure the volumetric bone mineral 
density in the thoracolumbar vertebrae, the T11~L5 
spine level was chosen. In each scan, vertebrae with 
compression fracture or high deformation were 
excluded. A total of 403 vertebrae were included in this 
study. 

2.2. QCT Acquisition 

All images were obtained using the Siemens 
SOMATOM Definition Flash CT Scanner (Siemens, 
Germany). The scans were performed at 120 kV and 
automatic tube current mode, with 1.0 mm slice 
thickness and a field of view of 200 mm at the lumbar 
spine region. The images were routinely reconstructed 
with a reconstruction increment of 0.7 mm and B30s 
kernel, leading to an in-plane resolution of 0.4 mm and 
a z-axis resolution of 0.7 mm. 

2.3. Manual Vertebral Body Segmentation 

All the vertebral bodies were manually segmented 
to create the segmentation ground truth. The Fast 
GrowCut-based segmentation was performed for each 
CT image with Slicer v4.8.1(Kitware) [15]. The cortical 
and cancellous bone regions were separated using 
global threshold-based segmentation with manual 
removal of mislabeled regions. Then, the bony layer of 
the endplate regions and the cortical wall were 
manually separated. 

2.4. Vertebral Body Atlas Generation for Atlas-
Based Segmentation 

A total of 30 healthy L1 and L2 lumbar vertebral 
body mask images from 15 young individuals (8 
women and 7 men with a mean age of 29 ± 6.1 years) 
were manually segmented. The volume mask datasets 
of the vertebral body were loaded and reconstructed 
into 3D polygon models using ShapeWorks Studio [16]. 
In brief, the smoothing step was performed to reduce 
model complexity. Then, the optimization was 
performed to build the particle correspondence shape 
model. The number of corresponding particles was set 
to 10 and the relative weighting was set to 1.00 in the 
optimization step. Finally, the mean vertebral body 
shape model was generated and converted into volume 
data as a standard vertebral body shape image. To 
simulate the cortical and cancellous bone regions, the 
1.5 mm distance inner region of the vertebral body 
contour was defined as the cortical bone region and 
labeled with a different value. 
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2.4. Segmentation Pipeline with a Coarse-To-Fine 
Strategy 

A four-step coarse-to-fine strategy was proposed to 
segment the vertebral body subregions. 

2.4.1. Preprocessing: Vertebral Body Location 

Before vertebral body segmentation, the interested 
segmental level was selected by manually labeling the 
centroid region of the vertebral body in Slicer v4.8.1 
[15]. Then, a 64 × 64 × 64 mm bounding box was used 
to crop the image based on the labeled vertebral body 

centroid. Finally, the cropped image patch was resized 
to 128 × 128 × 128 voxel size for analysis. 

2.4.2. Coarse-Grained: Vertebral Body 
Segmentation 

An iterative convolutional neural network approach 
was adopted for single vertebral body segmentation 
[17]. In brief, a U-net like the fully convolutional neural 
network architecture was created to detect the 
vertebral body region from the cropped image patches 
one by one. The regions that had been segmented 

 

Figure 1: Optimized Voxel Morph model architecture (A) and atlas-based deformable registration strategy (B). 
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from the previous patch were recorded and ignored in 
the next patch. 

2.4.3. Median-Grained: Cortical Bone Region 
Segmentation 

We adopted a multi-scale Otsu threshold method 
[18] for the cortical region segmentation. In brief, the 
original image was filtered by the Gaussian filter with 
multi-sized sigma kernels (sigma = 0, 1, 2..., 9). Then, 
the Otsu threshold was performed on each filtered 
image and the binary masks were summed up as a 
fusion image. The region with a value above 5 was 
defined as the cortical region. 

2.4.4. Fine-Grained: Atlas-Based Endplates 
Segmentation 

An atlas-based segmentation approach was 
adopted for endplates segmentation. For the atlas-
based segmentation, images were deformably 
registered to a standard atlas, then a preset 
segmentation mask was overlapped on the registered 
image to find the region of interest. 

In brief, the image registration was performed by 
two steps: (1) “rigid alignment” and (2) “non-rigid 

registration.” An automatic rigid registration was 
performed for each vertebral body image to make sure 
each vertebral body were rigidly registered to the 
vertebral body atlas using the SimpleElastix v.0.1 [19]. 
After rigid registration, the VoxelMorph framework 
based on unsupervised deep learning was applied for 
fast deformable registration [20] (Figure 1.A). After the 
deep learning model training, the spatial displacement 
field was predicted from the VoxelMorph model based 
on the pair of vertebral body atlas and cortical 
segmented images for deformable registration (Figure 
1.B). 

To segment the endplate regions, the atlas of 
endplate regions was adaptively generated based on a 
morphological transform method. In brief, the 
registered cortical region mask was filtered by a 
grayscale morphological opening operation with a disk-
like structure element with a radius of 8 voxels in scikit-
image v.0.17 (open source). Then, a similarity score 
was generated by voxel-wise multiply of the filtered 
image and the cortical image. Voxels with a similarity 
score above 0.05 were considered as the endplate 
region (Figure 2). Finally, a VoxelMorph-based 
deformable registration was performed using the 

	  

Figure 2: Voxel-wise scatters plot of morphological feature and density feature values for endplate thresholding. (A. Original 
registered image, B. Morphological ‘hit-transformed’ image, C. Voxel-wise relationship between density and hit-transform 
features. The endplate features were usually above the dashed curve; D. Endplate segmentation results colored in green) 
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endplate mask atlas as a moving image and the 
cortical mask image of the original CT image as the 
target image. After deformable registration, the mask 
would cover the endplate regions in the original CT 
image (Figure 3). 

2.5. Deep Learning Models Training 

To implement the methods mentioned above, a 
home-made program was built with Python 3.5 (open 
source; Python Software Foundation, Wilmington, DE). 
Scikit-image and NumPy library were used for the 
implementation. Keras v2.1.2 with Tensor Flow-GPU 
v1.3 was used for deep learning. The experiments 
were performed in Intel Core i7 CPU and NVIDIA GTX 
1080Ti GPU (Nvidia, Santa Clara, CA) and 16GB RAM 
with CUDA 8.0 (Nvidia) in the Ubuntu v16.04 operating 
system (Canonical, London, England). 

For iterative U-net model training, a Tversky loss 
[21] was with alpha 0.7 and beta 0.5. For VoxelMorph 
model training, the cortical bone segmentation mask 
datasets were randomly paired as the moving and fixed 
image for unsupervised Voxel Morph model training. 
The training loss was defined as the combination of 
appearance similarity loss [the mean square error 

(MSE) loss was used] and smooth displacement loss 
weighted by 1 and 0.1, separately. The details of the 
definition of similarity and displacement loss can be 
found in the original paper by Balakrishnan et al. [20]. 

In all models, the ‘Adam’ optimization method was 
used for the model parameters training. To evaluate 
the training performance, 80% of the datasets were 
randomly chosen as a training dataset and 20% as a 
validation dataset. The iterative U-net model was 
trained by 150 epochs with a batch size of 4 datasets. 
The Voxel model was trained by 50 iterations per 
epoch for 1000 epochs with a batch size of 8 pairs. 

2.6. Automatic Segmentation Performance 
Assessment 

2.6.1. Data Selection 

An extra dataset with 8 vertebrae CT scans (n = 8, 
mean age 62 ± 8.2 years) that was not included in the 
deep learning training stage was randomly selected 
from the local Picture Archiving and Communication 
Systems (PACS) database as the testing dataset for 
the segmentation performance evaluation. 

 

Figure 3: Illustration of the atlas-based segmentation workflow. 
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2.6.2. Quality of Deformable Vertebral Body 
Registration 

Following a similar study from Valentinitsch et al. 
[22], an Assessing Quality Using Image Registration 
Circuits (AQUIRC) [23] was used for registration quality 
assessment. In brief, a circuit validation of the non-rigid 
registration was performed. The circuit registered 
image would be compared to the original image to 
assess the registration quality. In this study, the 
average MSE and the Dice Coefficient were used to 
analyze the registration quality. Following the 
previously reported study [23], to calculate the 
registration quality in the ‘circuit,’ a group of at least 10 
circuits formed by 5 randomly chosen images was 
solved altogether. Finally, a quality evaluation was 
performed for all the training samples and the average 
MSE and Dice scores were recorded. 

2.6.3. Automatic Vertebral Subregions 
Segmentation Performance in MD-CT Images 

The segmentation accuracy, Dice coefficients, and 
IoU were computed to evaluate the segmentation 
quality. The average and standard deviation of the 
indices in the datasets were recorded for statistical 
analysis. 

2.7. Subregional BMD Measurement Feasibility 
Study 

2.7.1. Data Selection 

For the scan-rescan reproducibility and precision 
evaluation, patients that performed two scans within 1 
month were retrospectively selected from the Picture 
Archiving and Communication Systems (PACS) 
database. Finally, 20 patients (16 women and 4 men 
with a mean age of 70.1 ± 4.8 years) with short-term 
rescan in the spine region were collected. 

2.7.2. BMD Measurement 

The BMD in each subregion of interest was 
measured separately. For the BMD calibration, an 
asynchronous BMD calibration was performed [24]. In 
brief, the correlation between CT value and HA-
equivalent BMD value was retrospectively measured 
using 4 QCT datasets that were scanned with the BMD 
phantom (Syngo Osteo, Siemens, Germany) using the 
routine-CT scanning protocol. The calibration equation 
was determined by the linear correlation equation 
between the measured CT value of the BMD phantom 
and the known hydroxyapatite calcium (HA-Ca) 
equivalent density of the phantom insert. 

2.7.3. Measurement Reproducibility Evaluation 

The CT image datasets for the patients who 
underwent two abdominal CT scans were paired. The 
subregional BMD measurement was performed for the 
same vertebral segmental level in two scans. The 
correlation between the two scans was analyzed using 
the Pearson correlation analysis. The differences 
between the biomarkers measured in two repeated 
scans were analyzed by Bland-Altman analysis [25]. 
The mean of the pairwise differences was reported as 
bias with 95% limits of agreement. The intraclass 
correlation coefficient was calculated to evaluate the 
measurement reliability, where the ICC value closer to 
1 represents the better measurement reliability. 

2.8. Statistical Analysis 

The statistical outcomes were reported as x ̄ ± SD. 
All statistical analysis was performed with MedCalc 
Statistical Software version 19.1 (MedCalc Software 
bv, Ostend, Belgium). The statistical significance was 
defined as P < 0.05. 

3. RESULTS 
3.1. Quality of Deformable Registration 

The quality of deformable registration was 
evaluated by AQUIRC-MSE and Dice score in Table 1. 
For the segmentation mask and the registration, the 
AQUIRC-MSE is 0.15 ± 0.055, and the AQUIRC-DICE 
coefficient is 0.98 ± 0.0059. 

Table 1:  Deformable Registration Quality 

Image Type AQUIRC-MSE AQUIRC-DICE 

Segmentation Mask 0.15 ± 0.055 0.98 ± 0.0059 

 
3.2. Automatic Segmentation Performance 

The iterative U-net model showed high accuracy 
(0.98 ± 0.022), Dice coefficient (0.92 ± 0.062) and IoU 
value (0.87 ± 0.092) for the entire vertebral body 
segmentation. The multi-scale Otsu threshold-based 
cortical bone segmentation method showed high 
accuracy (0.95 ± 0.018), Dice coefficient (0.92 ± 
0.033), and IoU value (0.85 ± 0.051). For the automatic 
endplate segmentation method, the segmentation 
performance showed high segmentation accuracy 
(0.89 ± 0.046) and the Dice coefficient (0.75 ± 0.09), 
while a moderately satisfying level of IoU value (0.61 ± 
0.12) was found (Table 2). 
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3.3. Reproducibility and Precision of Automatic 
Subregional BMD Measurements 

In two scans, the BMD measurement of the entire 
vertebral body, cortical bone region, and cancellous 
bone region showed strong linear correlations (r = 0.96 
for the entire region, r = 0.95 for the cortical region, and 
r = 0.89 for the cancellous region, respectively) with a 
narrow limit of agreement (−20.4~17.9 mg/cm3 for the 
entire region, −39.5~33.3 mg/cm3 for the cortical 

region, and −23.4~20.9 mg/cm3 for the cancellous 
region, respectively). The measurement of the superior 
endplate region BMD showed a good linear correlation 
between two scans (r = 0.82) and the limits of 
agreement were relatively wide (−44.9~58.9 mg/cm3). 
However, the BMD measurement of the inferior 
endplate region showed a moderate linear correlation 
between two scans (r = 0.63) with wide limits of agree- 
ment (−81.6~106.5 mg/cm3) (Figure 4 and Figure 5). 

Table 2: Cortical Bone Segmentation Accuracy using Different Threshold Technique 

 Vertebral Body  Cortical Endplates 

Acc 0.98 ± 0.022 0.95 ± 0.02 0.89 ± 0.05 

Dice Co. 0.92 ± 0.062 0.92 ± 0.03 0.75 ± 0.09 

IoU 0.87 ± 0.092 0.85 ± 0.05 0.61 ± 0.12 

(Dice Co.: Dice coefficient, IoU: Intersection over Union). 

 

Figure 4: The linear correlation of the subregional BMD measurements between repeated scans. (A. Entire vertebral body 
region, B. Cortical bone region, C. Cancellous bone region, D. Superior endplate region, E. Inferior endplate region.) 
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Between two repeated scans, the ICC was above 
0.95 for the entire vertebral body, cortical region, and 
cancellous region BMD measurements, indicating good 
reliability of the repeat measurements. However, the 
BMD measurement in superior and inferior endplate 
regions showed low repeat measurement reliability with 
ICC < 0.9 (Table 3). 

4. DISCUSSION 

4.1. Automatic Vertebral Body Segmentation 

Methods for semi-automatic vertebral body 
segmentation have been investigated for decades. One 
of the most used interactive methods for object 
segmentation is the region’s growing-based method. 

 

Figure 5: The Bland-Altman plot of the subregional BMD measurements between repeated scans. (A. Entire vertebral body 
region, B. Cortical bone region, C. Cancellous bone region, D. Superior endplate region, E. Inferior endplate region). 

Table 3: The Intraclass Correlation Coefficient of the Subregional BMD Measurements 

 Entire  Cortical Cancellous Superior Endplate Inferior Endplate 

ICC 0.97 0.96 0.95 0.89 0.77 

95% CI 0.93~0.99 0.92~0.99 0.87~0.98 0.72~0.96 0.42~0.91 

(ICC: Intraclass correlation coefficient; 95% CI: 95% Confidence Interval). 
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Many modified methods [26] were developed for 
medical image segmentation based on this concept. 
More recently, the Grow-cut method [15] was 
introduced for medical imaging segmentation as a fast-
semi-automatic method. The grow-cut algorithm is a 
competitive region growing method that can segment 
the image into multi-labels with high accuracy. It was 
validated in the vertebral body segmentation task with 
high accuracy and flexibility [27]. In this study, we 
preferred to use the Grow-cut method for semi-
automatic vertebral body segmentation as it has been 
well studied and implemented in off-the-shelf software 
such as the Slicer and Photoshop for direct application. 

On the other hand, the fully automatic segmentation 
task is more complicated and has more challenges. 
Vertebral body segmentation has been investigated in 
hundreds of studies. Due to the growth of interest in the 
machine learning approach in recent years, we 
reviewed the automatic method in two sub-fields: the 
non-learning-based and learning-based approach. 

For the non-learning-based approach, the feature 
detection was usually based on basic image 
eigenvalues such as the Hough transformation [28], or 
other morphological and geometric shapes [29] that 
could be easily detected from images. Since the 
feature extraction was based on basic eigenvalues, the 
direct correlation between the features and the 
vertebral body was unclear. Thus, the workflow should 
be dedicatedly designed by researchers for the 
automatic vertebral body segmentation purpose, as the 
accuracy of these methods relies highly on how robust 
the workflows are designed. 

As for the learning-based approach, the machine 
learning-based models have recently been widely 
studied as an end-to-end solution. Among all the 
solutions, the 3D U-net [30] still seems to be the best 
architecture for medical image segmentation tasks and 
accumulating solutions have been developed based on 
the basic 3D U-net architecture. However, currently, 
none of the fully automatic vertebral body segmentation 
methods have been used in a clinical study nor in 
clinical practice. 

In this study, the hand-crafted methods were 
preferred as it is a ‘white-box’ approach with easily 
controlled error and effects. The methods we adopted 
included the classical method of multi-scale 
thresholding which is used widely in image processing 
and has been validated as a reliable method for CT 
image analysis [27]. 

4.2. Vertebral Subregions Segmentation 

The vertebral bone can be further separated into the 
vertebral arch and vertebral body. The vertebral body 
further includes the endplates, cortical shell, and 
cancellous bone based on its sub-anatomical 
characters. Since the sub-anatomical parts of the 
vertebral body have different biophysical functions, a 
different part of the vertebral structure has shown its 
role in different spine diseases. Segmentation of the 
sub-structure of the vertebral body is of great 
importance for disease quantification. However, on the 
contrary to the overwhelming amount of methods 
dealing with whole vertebral body segmentation, there 
are fewer studies reported on sub-anatomical vertebral 
body structure segmentation. 

Segmentation of the cortical and cancellous bone is 
one of the hard tasks for bone analysis. At the current 
stage, the most popular solutions are addressed to the 
rule-based methods. One of the widely used ideas is 
based on threshold segmentation. The semi-automatic 
threshold segmentation has been well accepted among 
off-the-shelf medical imaging software. Recently, a dual 
threshold-based method was proposed for micro-CT 
cortical and cancellous bone segmentation [31]. 
Another research orientation is to establish 
mathematical models to decompose the signal of 
cortical and cancellous bone [32]. Although the 
mathematical modeling method achieved higher 
accuracy on the ‘real’ cortical bone segmentation 
compared to the HR-CT gold standard outcome, the 
modeling function is varied in different CT scanners 
and cannot be directly used without adjustment for 
each type of CT scanner. More recently, the histogram 
clustering threshold method is one of the new ideas for 
bone segmentation [33]. The basic concept is that the 
cortical and cancellous bone has a different signal 
range that forms the different parts of the histogram. 
For a high-resolution CT, the histogram can be 
clustered by a threshold and then used for cortical 
bone and cancellous bone separation. In this study, the 
histogram clustering method was further researched 
since it is a global analysis approach that can be easily 
implemented without prior knowledge of 3D bone 
geometry and mathematical modeling functions. 

Even though the cortical bone segmentation 
methods have been relatively well studied by 
researchers, to our knowledge, only one study that 
dealt with the endplate segmentation task was reported 
at the present day [10]. However, that study was 
developed for mice bone image studies in micro-CT. 
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The manifestations of the endplates in micro-CT 
images are far different from the clinical CT. To date, 
the automatic method that applies to vertebral endplate 
segmentation in clinical CT images has been rarely 
reported. In this study, a hybrid method combining the 
learning-based segmentation and atlas-based 
deformable segmentation was proposed to achieve 
automatic endplate segmentation and achieved a good 
performance on the validation datasets. 

5. CONCLUSION 

Through this study, we found the deep learning-
based approach to be practical and efficient for 
vertebral subregional BMD analysis. The validation 
experiments further verified that the automatic 
approach can achieve high segmentation accuracy and 
BMD measurement precision for vertebral cortical and 
cancellous bone regions. This study provides evidence 
that the automatic approach has the potential capacity 
to be a practical tool for vertebral subregional 
osteoporosis analysis. 
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