Prognostic Factors for Carcinoma of the Uterine Cervix Treated with Concurrent-Chemoradiotherapy
DOI:
https://doi.org/10.12974/2309-6160.2013.01.01.7Keywords:
Locally advanced carcinoma of the cervix, uterine cervix, staging in ca cervix, lymph node in ca cervix, prognostic factors in cancer cervix, predictive factors in cancer cervix.Abstract
Carcinoma of the uterine cervix is most commonly staged with the FIGO (Fédération Internationale de Gynécologie et d'Obstétrique) system, which is essentially based upon benevolent intentions of simplicity and accessibility. Locally advanced carcinoma of the cervix (LACC) is defined as disease belonging to stages which are not amenable to routine upfront surgery. Staging for any cancer can be expected to provide valuable information with regards to prognosis and in choosing the appropriate and optimal pathway of clinical management. Hence, it could be said that improper staging or inadequate staging can lead to improper management. Carcinoma of the cervix (CC) continues to be staged by the FIGO system, which continues to ignore proven prognostic factors such as lymph nodal involvement, volume of disease and various other factors. This review intends to acquaint the reader about the exhaustive list of prognostic variables which are of potential significance in predicting prognosis, in determining optimal treatment, in predicting outcomes of treatment and possibly suggesting a subset of patients who may benefit with modified or intensified treatment strategies.
References
Rutledge FN, Mitchell MF, Munsell M, Bass S, McGuffee V, Atkinson EN. Youth as a prognostic factor in carcinoma of the cervix: a matched analysis. Gynecol Oncol 1992; 44: 123-30. http://dx.doi.org/10.1016/0090-8258(92)90027-G
Acharki A, Sahraoui S, Benider A, Tawfiq N, Jouhadi H, Bouras N, et al. Cancer of the uterine cervix in young women. A retrospective study of 337 cases. Bull Cancer 1997; 84: 373-8.
Huang EY, Hsu HC, Sun LM, Chanchien CC, Lin H, Chen HC, et al. Prognostic value of pretreatment carcinoembryonic antigen after definitive radiotherapy with or without concurrent chemotherapy for squamous cell carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 2011; 81: 1105- 13. http://dx.doi.org/10.1016/j.ijrobp.2010.07.011
Farley JH, Hickey KW, Carlson JW, Rose GS, Kost ER, Harrison TA. Adenosquamous histology predicts a poor outcome for patients with advanced-stage, but not earlystage, cervical carcinoma. Cancer 2003; 97: 2196-202. http://dx.doi.org/10.1002/cncr.11371
Delaloye JF, Pampallona S, Coucke PA, De Grandi P. Younger age as a bad prognostic factor in patients with carcinoma of the cervix. Eur J Obstet Gynecol Reprod Biol 1996; 64: 201-5. http://dx.doi.org/10.1016/0301-2115(95)02290-2
Dattoli MJ, Gretz HF 3rd, Beller U, Lerch IA, Demopoulos RI, Beckman EM, et al. Analysis of multiple prognostic factors in patients with stage IB cervical cancer: Age as a major determinant. Int J Radiat Oncol Biol Phys 1989; 17: 41-7. http://dx.doi.org/10.1016/0360-3016(89)90368-4
Meanwell CA, Kelly KA, Wilson S, Roginski C, Woodman C, Griffiths R, et al. Young age as a prognostic factor in cervical cancer: Analysis of population based data from 10,022 cases. Br Med J (Clin Res Ed) 1988; 296: 386-91. http://dx.doi.org/10.1136/bmj.296.6619.386
Mitchell PA, Waggoner S, Rotmensch J, Mundt AJ. Cervical cancer in the elderly treated with radiation therapy. Gynecol Oncol 1998; 71: 291-298. http://dx.doi.org/10.1006/gyno.1998.5180
Evans SM, Koch CJ. Prognostic significance of tumor oxygenation in humans. Cancer Lett 2003; 195: 1-16. http://dx.doi.org/10.1016/S0304-3835(03)00012-0
Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 1953; 26: 638-48. http://dx.doi.org/10.1259/0007-1285-26-312-638
Hill RR, Bush RS, Yeung P. The effect of anemia on the fraction of hypoxic cells in experimental tumor. Br J Radiol 1971; 44: 299-304. http://dx.doi.org/10.1259/0007-1285-44-520-299
Bush RS. The significance of anemia in clinical radiation therapy. Int J Radiat Oncol Biol Phys 1986; 12: 2047-50. http://dx.doi.org/10.1016/0360-3016(86)90146-X
Dische S. Radiotherapy and anaemia--the clinical experience. Radiother Oncol 1991; 20 Suppl 1: 35-40. http://dx.doi.org/10.1016/0167-8140(91)90184-I
Thomas G, Ali S, Hoebers FJ, Darcy KM, Rodgers WH, Patel M, et al. Phase III trial to evaluate the efficacy of maintaining hemoglobin levels above 12.0 g/dL with erythropoietin vs above 10.0 g/dL without erythropoietin in anemic patients receiving concurrent radiation and cisplatin for cervical cancer. Gynecol Oncol 2008; 108: 317-25. http://dx.doi.org/10.1016/j.ygyno.2007.10.011
Lavey RS, Liu PY, Greer BE, Robinson WR 3rd, Chang PC, Wynn RB, et al. Recombinant human erythropoietin as an adjunct to radiation therapy and cisplatin for stage IIB-IVA carcinoma of the cervix: a Southwest Oncology Group study. Gynecol Oncol 2004; 95: 145-51. http://dx.doi.org/10.1016/j.ygyno.2004.07.009
Dellas K, Bache M, Pigorsch SU, Taubert H, Kappler M, Holzapfel D, et al. Prognostic impact of HIF-1alpha expression in patients with definitive radiotherapy for cervical cancer. Strahlenther Onkol 2008; 184: 169-74. http://dx.doi.org/10.1007/s00066-008-1764-z
Burri P, Djonov V, Aebersold DM, Lindel K, Studer U, Altermatt HJ, et al. Significant correlation of hypoxia-inducible factor-1alpha with treatment outcome in cervical cancer treated with radical radiotherapy. Int J Radiat Oncol Biol Phys 2003; 56: 494-501. http://dx.doi.org/10.1016/S0360-3016(02)04579-0
LaPolla JP, Schlaerth JB, Gaddis O, Morrow CP. The influence of surgical staging on the evaluation and treatment of patients with cervical carcinoma. Gynecol Oncol 1986; 24: 194-206. http://dx.doi.org/10.1016/0090-8258(86)90028-4
Fine BA, Hempling RE, Piver MS, Baker TR, McAuley M, Driscoll D. Severe radiation morbidity in carcinoma of the cervix: impact of pretherapy surgical staging and previous surgery. Int J Radiat Oncol Biol Phys 1995; 31: 717-23. http://dx.doi.org/10.1016/0360-3016(94)00458-7
Klevens RM, Fleming PL, Mays MA, Frey R. Characteristics of women with AIDS and invasive cervical cancer. Obstet Gynecol 1996; 88: 269-73. http://dx.doi.org/10.1016/0029-7844(96)00186-X
Zhang YX, Gui XE, Zhong YH, Rong YP, Yan YJ. Cancer in cohort of HIV-infected population: prevalence and clinical characteristics. J Cancer Res Clin Oncol 2011; 137: 609-14. http://dx.doi.org/10.1007/s00432-010-0911-y
Toubassi D, Himel D, Winton S, Nyhof-Young J. The informational needs of newly diagnosed cervical cancer patients who will be receiving combined chemoradiation treatment. J Cancer Educ 2006; 21: 263-8. http://dx.doi.org/10.1080/08858190701347937
Mangclaviraj S, Kerr SJ, Chaithongwongwatthana S, Ananworanich J, Hirschel B, Emery S, et al. Nadir CD4 count and monthly income predict cervical squamous cell abnormalities in HIV-positive women in a resource-limited setting. Int J STD AIDS 2008; 19: 529-32. http://dx.doi.org/10.1258/ijsa.2007.007222
Waller J, Jackowska M, Marlow L, Wardle J. Exploring age differences in reasons for nonattendance for cervical screening: a qualitative study. BJOG 2012; 119: 26-32. http://dx.doi.org/10.1111/j.1471-0528.2011.03030.x
Dikshit R, Gupta PC, Ramasundarahettige C, Gajalakshmi V, Aleksandrowicz L, Badwe R, et al. Cancer mortality in India: a nationally representative survey. Lancet 2012; 379: 1807- 16. http://dx.doi.org/10.1016/S0140-6736(12)60358-4
Lagasse LD, Creasman WT, Shingleton HM, Blessing JA. Results and complications of operative staging in cervical cancer: experience of the Gynecology Oncology Group. Gynecol Oncol 1980; 9: 90-98. http://dx.doi.org/10.1016/0090-8258(80)90013-X
Edge SB, Byrd DR, Compton CC. American Joint Committee on Cancer (AJCC) Cancer Staging Manual . Seventh Edition. Chicago : Springer, Inc 2010
Pecorelli S, Zigliani L, Odicino F. Revised FIGO staging for carcinoma of the cervix. Int J Gynaecol Obstet 2009; 105: 107-8. http://dx.doi.org/10.1016/j.ijgo.2009.02.009
Eifel PJ, Morris M, Wharton JT, Oswald MJ. The influence of tumor size and morphology on the outcome of patients with FIGO stage IB squamous cell carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 1994; 29: 9-16. http://dx.doi.org/10.1016/0360-3016(94)90220-8
Nelson JH Jr, Boyce J, Macasaet M, Lu T, Bohorquez JF, Nicastri AD, et al. Incidence, significance and follow-up of paraaortic lymph node metastases in late invasive carcinoma of the cervix. Am J Obstet Gynecol 1977; 128: 336-40.
Gold MA, Tian C, Whitney CW, Rose PG, Lanciano R. Surgical versus radiographic determination of paraaortic lymph node metastases before chemoradiation for locally advanced cervical carcinoma. A Gynecologic Oncology Study. Cancer 2008; 112: 1954-63. http://dx.doi.org/10.1002/cncr.23400
Lanciano R, Martz K, Coia L. Tumor and treatment factors improving outcome in stage III-B cervix cancer. Int J Radiat Oncol Biol Phys 1991; 20: 95-100. http://dx.doi.org/10.1016/0360-3016(91)90143-R
Roman LD, Morris M, Mitchell MF, Eifel PJ, Burke TW, Atkinson EN. Prognostic factors for patients undergoing simple hysterectomy in the presence of invasive cancer of the cervix. Gynecol Oncol 1993; 50: 179-84. http://dx.doi.org/10.1006/gyno.1993.1189
Fuller AF Jr, Elliott N, Kosloff C, Lewis JL Jr. Lymph node metastases from carcinoma of the cervix, stage IB and IIA: implications for prognosis and treatment. Gynecol Oncol 1982; 13: 165-74. http://dx.doi.org/10.1016/0090-8258(82)90024-5
Lovecchio JL, Averette HE, Donato D, Bell J. 5-year survival of patients with paraaortic nodal metastases in clinical stage IB and IIA cervical carcinoma. Gynecol Oncol 1989; 34: 43-5. http://dx.doi.org/10.1016/0090-8258(89)90103-0
Hsu CT, Cheng YS, Su SC. Prognosis of uterine cervical cancer with extensive lymph node metastases. Special emphasis on the value of pelvic lymphadenectomy in the surgical treatment of uterine cervical cancer. Am J Obstet Gynecol 1972: 114: 954-62.
Lanciano RM, Corn BW. The Role of Surgical Staging for Cervical Cancer. Semin.Radiat.Oncol 1994: 4: 46-51. http://dx.doi.org/10.1016/S1053-4296(05)80110-9
Petereit DG, Hartenbach EM, Thomas GM. Para-aortic lymph node evaluation in cervical cancer: the impact of staging upon treatment decisions and outcome. Int J Gynecol Cancer 1998; 8: 353-364. http://dx.doi.org/10.1046/j.1525-1438.1998.9878R.x
Nelson JH Jr, Macasaet MA, Lu T, Bohorquez JF, Smart GE, Nicastri AD, Walton LA. The incidence and significance of para-aortic lymph node metastases in late invasive carcinoma of the cervix. Am J Obstet Gynecol 1974; 118: 749.
Grigsby PW, Perez CA, Chao KS, Herzog T, Mutch DG, Rader J. Radiation therapy for carcinoma of the cervix with biopsy-proven positive paraaortic lymph nodes. Int J Radiat Oncol Biol Phys 2001; 49: 733-8. http://dx.doi.org/10.1016/S0360-3016(00)00806-3
Nelson JH Jr, Boyce J, Macasaet M, Lu T, Bohorquez JF, Nicastri AD, et al. Incidence, significance and follow up of para-aortic lymph node metastases in late invasive carcinoma of the cervix. Am J Obstet Gynecol 1977; 128: 336-40.
Narayan K, Hicks RJ, Jobling T, Bernshaw D, McKenzie AF. A comparison of MRI and PET scanning in surgically staged loco-regionally advanced cervical cancer: potential impact on treatment. Int J Gynecol Cancer 2001; 11: 263-71. http://dx.doi.org/10.1046/j.1525-1438.2001.011004263.x
Miller TR, Grigsby PW. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. Int J Radiat Oncol Biol Phys 2002; 53: 353-9. http://dx.doi.org/10.1016/S0360-3016(02)02705-0
Postema S, Pattynama PM, van den Berg-Huysmans A, Peters LW, Kenter G, et al. Effect of MRI on therapeutic decisions in invasive cervical carcinoma: direct comparison with the pelvic examination as a preoperative test. Gynecol Oncol 2000; 79: 485-9. http://dx.doi.org/10.1006/gyno.2000.5986
Rose PG, Adler LP, Rodriguez M, Faulhaber PF, Abdul- Karim FW, Miraldi F. Positron emission tomography for evaluating para-aortic lymph node metastasis in locally advanced cervical cancer before surgical staging: a surgicopathologic study. J Clin Oncol 1999; 17: 41-5.
Grigsby PW, Siegel BA, Dehdashti F. Lymph node staging by positron emission tomography in patients with carcinoma of the cervix. J Clin Oncol 2001; 19: 3745-9.
Brocker KA, Alt CD, Eichbaum M, Sohn C, Kauczor HU, Hallscheidt P. Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT: part 1. Strahlenther Onkol 2011; 187: 611-8. http://dx.doi.org/10.1007/s00066-011-4001-0
Gold MA. PET in cervical cancer--implications for 'staging,' treatment planning, assessment of prognosis, and prediction of response. J Natl Compr Canc Netw 2008; 6: 37-45.
Potish RA. Surgical staging, extended field radiation, and enteric morbidity in the treatment of cervix cancer. Int J Radiat Oncol Biol Phys 1995; 31: 1009-10. http://dx.doi.org/10.1016/0360-3016(94)00665-2
Weiser EB, Bundy BN, Hoskins WJ, Heller PB, Whittington RR, DiSaia PJ, et al. Extraperitoneal versus transperitoneal selective paraaortic lymphadenectomy in the pretreatment surgical staging of advanced cervical carcinoma (a Gynecologic Oncology Group study). Gynecol Oncol 1989; 33: 283-9. http://dx.doi.org/10.1016/0090-8258(89)90513-1
Wharton JT, Jones HW 3rd, Day TG Jr, Rutledge FN, Fletcher GH. Preirradiation celiotomy and extended field irradiation for invasive carcinoma of the cervix. Obstet Gynecol 1977; 49: 333-8.
Clough KB, Renolleau C, Durand JC. Should laparoscopic lymphadenectomy modify the therapeutic protocols for cancer of the cervix? J Gynecol Obstet Biol Reprod 1994; 23: 671-5.
Schneider A. The sentinel concept in patients with cervical cancer. J Surg Oncol 2007; 96: 337-41. http://dx.doi.org/10.1002/jso.20864
Young R, Scully R. Invasive adenocarcinoma and related tumors of the uterine cervix. Semin Diagn Pathol 1990; 7: 205-27.
Hacker NF, Friedlander ML. Cervical Cancer. In: Hacker NF, Friedlander ML, eds. Berek and Hacker's Gynecologic Oncology. 5th edition. Philadelphia: Lippincott Williams & Wilkins; 2010, p.341-396.
Cohn DE, Peters WA 3rd, Muntz HG, Wu R, Greer BE, Tamimi HK, et al. Adenocarcinoma of the uterine cervix metastatic to lymph nodes. Am J Obstet Gynecol 1998; 178: 1131-7. http://dx.doi.org/10.1016/S0002-9378(98)70313-8
Erzen M, Mozina A, Bertole J, Syrjänen K. Factors predicting disease outcome in early stage adenocarcinoma of the uterine cervix. Eur J Obstet Gynecol Reprod Biol 2002; 101: 185-91. http://dx.doi.org/10.1016/S0301-2115(01)00524-3
Eifel PJ, Morris M, Oswald MJ, Wharton JT, Delclos L. Adenocarcinoma of the uterine cervix. Prognosis and patterns of failure in 367 cases. Cancer 1990; 65: 2507-14. http://dx.doi.org/10.1002/1097- 0142(19900601)65:11<2507::AIDCNCR2820651120> 3.0.CO;2-9
Baalbergen A, Veenstra Y, Stalpers LL, Ansink AC. Primary surgery versus primary radiation therapy with or without chemotherapy for early adenocarcinoma of the uterine cervix. Cochrane Database Syst Rev 2010; (1): CD006248.
Stendahl U, Eklund G, Willén H, Willén R. Invasive squamous cell carcinoma of the uterine cervix. III. A malignancy grading system for indication of prognosis after radiation therapy. Acta Radiol Oncol 1981; 20: 231-43. http://dx.doi.org/10.3109/02841868109130201
Willén H, Eklund G, Johnsson JE, Stendahl U, Tropé C. Invasive squamous cell carcinoma of the uterine cervix. VIII. Survival and malignancy grading in patients treated by irradiation in Lund 1969-1970. Acta Radiol Oncol 1985; 24: 41-50. http://dx.doi.org/10.3109/02841868509134363
Crissman JD, Budhraja M, Aron BS, Cummings G. Histopathologic prognostic factors in stage II and III squamous cell carcinoma of the uterine cervix. Int J Gynecol Pathol 1987; 6: 97-103. http://dx.doi.org/10.1097/00004347-198706000-00001
Reagan JW, Fu YS. Histologic types and prognosis of cancers of the uterine cervix. Int J Radiat Oncol Biol Phys 1979; 5: 1015-20. http://dx.doi.org/10.1016/0360-3016(79)90611-4
Kumar S, Shah JP, Bryant CS, Imudia AN, Ali-Fehmi R, Malone JM Jr, et al. Prognostic significance of keratinization in squamous cell cancer of uterine cervix: a population based study. Arch Gynecol Obstet 2009; 280: 25-32. http://dx.doi.org/10.1007/s00404-008-0851-9
Plentyl AA, Friedman EA. Lymphatic system of the female genitalia: the morphologic basis of oncologic diagnosis and therapy. Philadelphia: WB Saunders, 1971
Perez CA, Kavanagh BD. Uterine Cervix. In: Halperin EC, Perez CA, Brady LW, Ed. Perez and Brady’s Principles and Practice of Radiation Oncology. 5th edn. Philadelphia: Lippincott Williams & Wilkins; 2008. p.1532-1609.
Grimard L, Genest P, Girard A, Gerig L, Prefontaine M, Drouin P, et al. Prognostic significance of endometrial extension in carcinoma of the cervix. Gynecol Oncol 1988; 31: 301-9. http://dx.doi.org/10.1016/S0090-8258(88)80008-8
Prempree T, Patanaphan V, Viravathana T, Sewchand W, Cho YK, Scott RM. Radiation treatment of carcinoma of the cervix with extension into the endometrium: a reappraisal of its significance. Cancer 1982; 49: 2015-20. http://dx.doi.org/10.1002/1097- 0142(19820515)49:10<2015::AIDCNCR2820491012> 3.0.CO;2-3
Fagundes H, Perez CA, Grigsby PW, Lockett MA. Distant metastases after irradiation alone in carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 1992; 24: 197-204. http://dx.doi.org/10.1016/0360-3016(92)90671-4
Narayan K, Fisher RJ, Bernshaw D, Shakher R, Hicks RJ. Patterns of failure and prognostic factor analyses in locally advanced cervical cancer patients staged by positron emission tomography and treated with curative intent. Int J Gynecol Cancer 2009; 19: 912-8. http://dx.doi.org/10.1111/IGC.0b013e3181a58d3f
Narayan K, Fisher RJ, Bernshaw D. Patterns of failure and prognostic factor analyses in locally advanced cervical cancer patients staged by magnetic resonance imaging and treated with curative intent. Int J Gynecol Cancer 2008; 18: 525-33. http://dx.doi.org/10.1111/j.1525-1438.2007.01050.x
Nakamura M, Bodily JM, Beglin M, Kyo S, Inoue M, Laimins LA. Hypoxia-specific stabilization of HIF-1alpha by human papillomaviruses. Virology 2009; 387: 442-8. http://dx.doi.org/10.1016/j.virol.2009.02.036
Bachtiary B, Schindl M, Pötter R, Dreier B, Knocke TH, Hainfellner JA, et al. Overexpression of hypoxia-inducible factor 1alpha indicates diminished response to radiotherapy and unfavorable prognosis in patients receiving radical radiotherapy for cervical cancer. Clin Cancer Res 2003; 9: 2234-40.
Lal A, Peters H, St Croix B, Haroon ZA, Dewhirst MW, Strausberg RL, et al. Transcriptional response to hypoxia in human tumors. J Natl Cancer Inst 2001; 93: 1337-43. http://dx.doi.org/10.1093/jnci/93.17.1337
Koong AC, Denko NC, Hudson KM, Schindler C, Swiersz L, Koch C, et al. Candidate genes for the hypoxic tumor phenotype. Cancer Res 2000; 60: 883-7.
Wykoff CC, Pugh CW, Maxwell PH, Harris AL, Ratcliffe PJ. Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumour suppressor by mRNA differential expression profiling. Oncogene 2000; 19: 6297-305. http://dx.doi.org/10.1038/sj.onc.1204012
Liao SY, Darcy KM, Randall LM, Tian C, Monk BJ, Burger RA, et al. Prognostic relevance of carbonic anhydrase-IX in high-risk, early-stage cervical cancer: a Gynecologic Oncology Group study. Gynecol Oncol 2010; 116: 452-8. http://dx.doi.org/10.1016/j.ygyno.2009.10.062
Mayer A, Höckel M, Vaupel P. Carbonic anhydrase IX expression and tumor oxygenation status do not correlate at the microregional level in locally advanced cancers of the uterine cervix. Clin Cancer Res 2005; 11: 7220-5. http://dx.doi.org/10.1158/1078-0432.CCR-05-0869
McDonald PC, Winum JY, Supuran CT, Dedhar S. Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 2012; 3: 84-97.
Tsang RW, Juvet S, Pintilie M, Hill RP, Wong CS, Milosevic M, et al. Pretreatment proliferation parameters do not add predictive power to clinical factors in cervical cancer treated with definitive radiation therapy. Clin Cancer Res 2003; 9: 4387-95.
Levine EL, Renehan A, Gossiel R, Davidson SE, Roberts SA, Chadwick C, et al. Apoptosis, intrinsic radiosensitivity and prediction of radiotherapy response in cervical carcinoma. Radiother Oncol 1995; 37: 1-9. http://dx.doi.org/10.1016/0167-8140(95)01622-N
West CM, Davidson SE, Roberts SA, Hunter RD. The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix. Br J Cancer 1997; 76: 1184-90. http://dx.doi.org/10.1038/bjc.1997.531
Huang Z, Mayr NA, Gao M, Lo SS, Wang JZ, Jia G, et al. Onset Time of Tumor Repopulation for Cervical Cancer: First Evidence from Clinical Data. Int J Radiat Oncol Biol Phys 2012; 84: 478-84. http://dx.doi.org/10.1016/j.ijrobp.2011.12.037
Huang Z, Mayr NA, Yuh WT, Lo SS, Montebello JF, Grecula JC, et al. Predicting outcomes in cervical cancer: A kinetic model of tumor regression during radiation therapy. Cancer Res 2010; 70: 463-70. http://dx.doi.org/10.1158/0008-5472.CAN-09-2501
Vidyasagar MS, Kodali M, Saxena P, Upadhya D, Murali Krishna C, Vadhiraja BM, et al. Predictive and prognostic significance of glutathione levels and DNA damage in cervix cancer patients undergoing radiotherapy. Int J Radiat Oncol Biol Phys 2010; 78: 343-9. http://dx.doi.org/10.1016/j.ijrobp.2009.08.014
Huang EY, Chen YF, Chen YM, Lin IH, Wang CC, Su WH, et al. A novel radioresistant mechanism of galectin-1 mediated by H-Ras-dependent pathways in cervical cancer cells. Cell Death Dis 2012; 3: e251. http://dx.doi.org/10.1038/cddis.2011.120
Le QT, Shi G, Cao H, Nelson DW, Wang Y, Chen EY, et al. Galectin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol 2005; 23: 8932–41. http://dx.doi.org/10.1200/JCO.2005.02.0206
van den Brûle FA, Waltregny D, Castronovo V. Increased expression of galectin-1 in carcinoma-associated stroma predicts poor outcome in prostate carcinoma patients. J Pathol 2001; 193: 80–7. http://dx.doi.org/10.1002/1096-9896(2000)9999:9999<::AIDPATH730> 3.0.CO;2-2
Roh HD, Boucher Y, Kalnicki S, Buchsbaum R, Bloomer WD, Jain RK. Interstitial hypertension in carcinoma of uterine cervix in patients: possible correlation with tumor oxygenation and radiation response. Cancer Res 1991; 51: 6695-8.
Milosevic MF, Fyles AW, Wong R, Pintilie M, Kavanagh MC, Levin W, et al. Interstitial fluid pressure in cervical carcinoma: within tumor heterogeneity, and relation to oxygen tension. Cancer 1998; 82: 2418-26. http://dx.doi.org/10.1002/(SICI)1097- 0142(19980615)82:12<2418::AID-CNCR16>3.0.CO;2-S
Duk JM, de Bruijn HW, Groenier KH, Hollema H, ten Hoor KA, Krans M, et al. Cancer of the uterine cervix: Sensitivity and specificity of serum squamous cell carcinoma antigen determinations. Gynecol Oncol 1990; 39: 186–94. http://dx.doi.org/10.1016/0090-8258(90)90430-S
Hong JH, Tsai CS, Chang JT, Wang CC, Lai CH, Lee SP, et al. The prognostic significance of pre- and posttreatment SCC levels in patients with squamous cell carcinoma of the cervix treated by radiotherapy. Int J Radiat Oncol Biol Phys 1998; 41: 823–30. http://dx.doi.org/10.1016/S0360-3016(98)00147-3
Molina R, Filella X, Lejarcegui JA, Pahisa J, Torné A, Rovirosa A, et al. Prospective evaluation of squamous cell carcinoma and carcinoembryonic antigen as prognostic factors in patients with cervical cancer. Tumour Biol 2003; 24: 156–64. http://dx.doi.org/10.1159/000073846
Takeda M, Sakuragi N, Okamoto K, Todo Y, Minobe S, Nomura E et al. Preoperative serum SCC, CA125, and CA19-9 levels and lymph node status in squamous cell carcinoma of the uterine cervix. Acta Obstetr Gynecol Scand 2002; 81: 451–7. http://dx.doi.org/10.1034/j.1600-0412.2002.810513.x
Ohno T, Nakayama Y, Nakamoto S, Kato S, Imai R, Nonaka T, et al. Measurement of serum squamous cell carcinoma antigen levels as a predictor of radiation response in patients with carcinoma of the uterine cervix. Cancer 2003; 97: 3114– 20. http://dx.doi.org/10.1002/cncr.11453
Scambia G, Benedetti Panici P, Foti E, Amoroso M, Salerno G, Ferrandina G, et al. Squamous cell carcinoma antigen: Prognostic significance and role in the monitoring of neoadjuvant chemotherapy response in cervical cancer. J Clin Oncol 1994; 12: 2309–16.
Schwarz JK, Siegel BA, Dehdashti F, Grigsby PW. Association of posttherapy positron emission tomography with tumor response and survival in cervical carcinoma. JAMA 2007; 298: 2289-95. http://dx.doi.org/10.1001/jama.298.19.2289
Olsen JR, Dehdashti F, Siegel BA, Zighelboim I, Grigsby PW, Schwarz JK. Prognostic utility of squamous cell carcinoma antigen in carcinoma of the cervix: association with pre- and posttreatment FDG-PET. Int J Radiat Oncol Biol Phys 2011; 81: 772-7. http://dx.doi.org/10.1016/j.ijrobp.2010.06.008
Ryu HS, Chang KH, Yang HW, Kim MS, Kwon HC, Oh KS. High cyclooxygenase-2 expression in Stage IB cervical cancer with lymph node metastasis or parametrial invasion. Gynecol Oncol 2000; 76: 320–5. http://dx.doi.org/10.1006/gyno.1999.5690
Gaffney DK, Holden J, Davis M, Zempolich K, Murphy KJ, Dodson M. Elevated cyclooxygenase-2 expression correlates with diminished survival in carcinoma of the cervix treated with radiotherapy. Int J Radiat Oncol Biol Phys 2001; 49: 1213–7. http://dx.doi.org/10.1016/S0360-3016(00)01583-2
Kim YB, Kim GE, Pyo HR, Cho NH, Keum KC, Lee CG, et al. Differential cyclooxygenase-2 expression in squamous cell carcinoma and adenocarcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 2004; 60: 822-9. http://dx.doi.org/10.1016/j.ijrobp.2004.04.030
Kang MK, Park W, Choi YL, Cho EY, Ahn G, Nam H, et al. The effect of cyclooxygenase-2 expression on tumor volume response in patients treated with radiotherapy for uterine cervical cancer. J Korean Med Sci 2009; 24: 1170-6. http://dx.doi.org/10.3346/jkms.2009.24.6.1170
Kim YB, Kim GE, Cho NH, Pyo HR, Shim SJ, Chang SK, et al. Overexpression of cyclooxygenase-2 is associated with a poor prognosis in patients with squamous cell carcinoma of the uterine cervix treated with radiation and concurrent chemotherapy. Cancer 2002; 95: 531-9. http://dx.doi.org/10.1002/cncr.10684
Gaffney DK, Winter K, Dicker AP, Miller B, Eifel PJ, Ryu J, et al. A Phase II study of acute toxicity for Celebrex (celecoxib) and chemoradiation in patients with locally advanced cervical cancer: primary endpoint analysis of RTOG 0128. Int J Radiat Oncol Biol Phys 2007; 67: 104-9. http://dx.doi.org/10.1016/j.ijrobp.2006.08.002
Jung YW, Lee SH, Paek JH, Nam EJ, Kim SW, Kim JH, et al. Acute toxicity of cyclooxygenase-2 inhibitor rofecoxib as a radiosensitizer for concurrent chemoradiation in the treatment of uterine cervical cancer. J Gynecol Oncol 2009; 20: 151-7. http://dx.doi.org/10.3802/jgo.2009.20.3.151
Soonthornthum T, Arias-Pulido H, Joste N, Lomo L, Muller C, Rutledge T, et al. Epidermal growth factor receptor as a biomarker for cervical cancer. Ann Oncol 2011; 22: 2166-78. http://dx.doi.org/10.1093/annonc/mdq723
Hagemann T, Bozanovic T, Hooper S, Ljubic A, Slettenaar VI, Wilson JL, et al. Molecular profiling of cervical cancer progression. Br J Cancer 2007; 96: 321-8. http://dx.doi.org/10.1038/sj.bjc.6603543
Kim GE, Kim YB, Cho NH, Chung HC, Pyo HR, Lee JD, et al. Synchronous coexpression of epidermal growth factor receptor and cyclooxygenase-2 in carcinomas of the uterine cervix: a potential predictor of poor survival. Clin Cancer Res 2004; 10: 1366-74. http://dx.doi.org/10.1158/1078-0432.CCR-0497-03
Woodworth CD, Michael E, Marker D, Allen S, Smith L, Nees M. Inhibition of the epidermal growth factor receptor increases expression of genes that stimulate inflammation, apoptosis, and cell attachment. Mol Cancer Ther 2005; 4: 650-8. http://dx.doi.org/10.1158/1535-7163.MCT-04-0238
Pérez-Regadera J, Sánchez-Muñoz A, De-la-Cruz J, Ballestín C, Lora D, García-Martín R, et al. Impact of epidermal growth factor receptor expression on disease-free survival and rate of pelvic relapse in patients with advanced cancer of the cervix treated with chemoradiotherapy. Am J Clin Oncol 2011; 34: 395-400. http://dx.doi.org/10.1097/COC.0b013e3181e84634
Pérez-Regadera J, Sánchez-Muñoz A, De-la-Cruz J, Ballestín C, Lora D, García-Martín R, et al. Cisplatin-based radiochemotherapy improves the negative prognosis of cerbB- 2 overexpressing advanced cervical cancer. Int J Gynecol Cancer 2010; 20: 164-72. http://dx.doi.org/10.1111/IGC.0b013e3181ad3e11
Noordhuis MG, Eijsink JJ, Roossink F, de Graeff P, Pras E, Schuuring E, et al. Prognostic cell biological markers in cervical cancer patients primarily treated with (chemo)radiation: a systematic review. Int J Radiat Oncol Biol Phys 2011; 79: 325-34. http://dx.doi.org/10.1016/j.ijrobp.2010.09.043
Noordhuis MG, Eijsink JJ, Ten Hoor KA, Roossink F, Hollema H, Arts HJ, et al. Expression of epidermal growth factor receptor (EGFR) and activated EGFR predict poor response to (chemo)radiation and survival in cervical cancer. Clin Cancer Res 2009; 15: 7389-97. http://dx.doi.org/10.1158/1078-0432.CCR-09-1149
Pickhard AC, Margraf J, Knopf A, Stark T, Piontek G, Beck C, et al. Inhibition of radiation induced migration of human head and neck squamous cell carcinoma cells by blocking of EGF receptor pathways. BMC Cancer 2011; 11: 388. http://dx.doi.org/10.1186/1471-2407-11-388
O'Brien PM, Saveria Campo M. Evasion of host immunity directed by papillomavirus-encoded proteins. Virus Res 2002; 88: 103-17. http://dx.doi.org/10.1016/S0168-1702(02)00123-5
Hudson JB, Bedell MA, McCance DJ, Laiminis LA. Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18. J Virol 1990; 64: 519-26.
Webster K, Parish J, Pandya M, Stern PL, Clarke AR, Gaston K. The human papillomavirus (HPV) 16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway. J Biol Chem 2000; 275: 87- 94. http://dx.doi.org/10.1074/jbc.275.1.87
von Knebel Doeberitz M, Reuschenbach M, Schmidt D, Bergeron C. Biomarkers for cervical cancer screening: the role of p16(INK4a) to highlight transforming HPV infections. Expert Rev Proteomics 2012; 9: 149-63. http://dx.doi.org/10.1586/epr.12.13
Mulvany NJ, Allen DG, Wilson SM. Diagnostic utility of p16INK4a: a reappraisal of its use in cervical biopsies. Pathology 2008; 40: 335-44. http://dx.doi.org/10.1080/00313020802035907
Ang KK, Sturgis EM. Human papillomavirus as a marker of the natural history and response to therapy of head and neck squamous cell carcinoma. Semin Radiat Oncol 2012; 22: 128-42. http://dx.doi.org/10.1016/j.semradonc.2011.12.004
Schwarz JK, Lewis JS Jr, Pfeifer J, Huettner P, Grigsby P. Prognostic Significance of p16 Expression in Advanced Cervical Cancer Treated with Definitive Radiotherapy. Int J Radiat Oncol Biol Phys 2012; 84: 153-7. http://dx.doi.org/10.1016/j.ijrobp.2011.11.032
Gillison ML, D'Souza G, Westra W, Sugar E, Xiao W, Begum S, et al. Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J Natl Cancer Inst 2008; 100: 407- 20. http://dx.doi.org/10.1093/jnci/djn025
Marur S, D'Souza G, Westra WH, Forastiere AA. HPVassociated head and neck cancer: A virus-related cancer epidemic. Lancet Oncol 2010; 11: 781-9. http://dx.doi.org/10.1016/S1470-2045(10)70017-6
Hernádi Z, Sápy T, Kónya J, Veress G, Czeglédy J. Followup of high risk, human papillomavirus (HPV)-positive patients with cancer of the uterine cervix. Orv Hetil 1997; 138: 1249- 53.
Lukaszuk K, Liss J. Detection of HPV DNA presence in lymph nodes as predictive factor in cervical carcinoma patients. Wiad Lek 2007; 60: 365-70.
Huang EY, Huang YJ, Chanchien CC, Lin H, Wang CJ, Sun LM, et al. Pretreatment carcinoembryonic antigen level is a risk factor for para-aortic lymph node recurrence in addition to squamous cell carcinoma antigen following definitive concurrent chemoradiotherapy for squamous cell carcinoma of the uterine cervix. Radiat Oncol 2012; 7: 13. http://dx.doi.org/10.1186/1748-717X-7-13
Libra M, Scalisi A, Vella N, Clementi S, Sorio R, Stivala F, et al. Uterine cervical carcinoma: role of matrix metalloproteinases (review). Int J Oncol 2009; 34: 897-903. http://dx.doi.org/10.3892/ijo_00000215
Jiang ZQ, Zhu FC, Qu JY, Zheng X, You CL. Relationship between expression of matrix metalloproteinase (MMP-9) and tumor angiogenesis, cancer cell proliferation, invasion, and metastasis in invasive carcinoma of cervix. Ai Zheng 2003; 22: 178-84.
Ju XZ, Yang JM, Zhou XY, Li ZT, Wu XH. EMMPRIN expression as a prognostic factor in radiotherapy of cervical cancer. Clin Cancer Res 2008; 14: 494-501. http://dx.doi.org/10.1158/1078-0432.CCR-07-1072
Tsai CC, Liu YS, Huang EY, Huang SC, Chang HW, Tseng CW, et al. Value of preoperative serum CA 125 in early-stage adenocarcinoma of the uterine cervixwithout pelvic lymph node metastasis. Gynecol Oncol 2006; 100: 591-95. http://dx.doi.org/10.1016/j.ygyno.2005.09.049
Gadducci A, Tana R, Cosio S, Genazzani AR. The serum assay of tumour markers in the prognostic evaluation, treatment monitoring and follow-up of patients with cervical cancer: a review of the literature. Crit Rev Oncol Hematol 2008; 66: 10-20. http://dx.doi.org/10.1016/j.critrevonc.2007.09.002
Wu D, Li ZN, Xu Y, Wang LH, Ding L, Wu JH, et al. Clinical significance of cathepsin B expressions in cervical cancer in tissues. Nan Fang Yi Ke Da Xue Xue Bao 2010; 30: 1330-2.
Liao CJ, Wu TI, Huang YH, Chang TC, Wang CS, Tsai MM, et al. Overexpression of gelsolin in human cervical carcinoma and its clinicopathological significance. Gynecol Oncol 2011; 120: 135-44. http://dx.doi.org/10.1016/j.ygyno.2010.10.005
Garg AK, Jhingran A, Klopp AH, Aggarwal BB, Kunnumakkara AB, Broadus RR, et al. Expression of nuclear transcription factor kappa B in locally advanced human cervical cancer treated with definitive chemoradiation. Int J Radiat Oncol Biol Phys 2010; 78: 1331-6. http://dx.doi.org/10.1016/j.ijrobp.2009.09.044
Kodama J, Hasengaowa, Kusumoto T, Seki N, Matsuo T, Ojima Y, et al. Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann Oncol 2007; 18: 70-6. http://dx.doi.org/10.1093/annonc/mdl342
Murdoch C. CXCR4: chemokine receptors extraordinaire. Immunol Rev 2000; 177: 175–84. http://dx.doi.org/10.1034/j.1600-065X.2000.17715.x
Murphy PM. Chemokines and the molecular basis of cancer metastasis. N Engl J Med 2001; 345: 833–5. http://dx.doi.org/10.1056/NEJM200109133451113
Mayr NA, Wang JZ, Lo SS, Zhang D, Grecula JC, Lu L, et al. Translating Response During Therapy into Ultimate Treatment Outcome: A Personalized 4-Dimensional MRI Tumor Volumetric Regression Approach in Cervical Cancer. Int J Radiat Oncol Biol Phys 2010; 76: 719-27. http://dx.doi.org/10.1016/j.ijrobp.2009.02.036
Nam H, Park W, Huh SJ, Bae DS, Kim BG, Lee JH, et al. The prognostic significance of tumor volume regression during radiotherapy and concurrent chemoradiotherapy for cervical cancer using MRI. Gynecol Oncol 2007; 107: 320-5. http://dx.doi.org/10.1016/j.ygyno.2007.06.022
Wang JZ, Mayr NA, Zhang D, Li K, Grecula JC, Montebello JF, et al. Sequential magnetic resonance imaging of cervical cancer: the predictive value of absolute tumor volume and regression ratio measured before, during, and after radiation therapy. Cancer 2010; 116: 5093-101. http://dx.doi.org/10.1002/cncr.25260
Mayr NA, Taoka T, Yuh WT, Denning LM, Zhen WK, Paulino AC, et al. Method and timing of tumor volume measurement for outcome prediction in cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 2002; 52: 14-22. http://dx.doi.org/10.1016/S0360-3016(01)01808-9
Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A. Fat suppression in MR imaging: Techniques and pitfalls. Radiographics 1999; 19: 373–82.
Yuh WT, Mayr NA, Jarjoura D, Wu D, Grecula JC, Lo SS, et al. Predicting control of primary tumor and survival by DCE MRI during early therapy in cervical cancer. Investig Radiol 2009; 44: 343–50. http://dx.doi.org/10.1097/RLI.0b013e3181a64ce9
Ma DJ, Zhu JM, Grigsby PW. Change in T2-fat saturation MRI correlates with outcome in cervical cancer patients. Int J Radiat Oncol Biol Phys 2011; 81: e707-12. http://dx.doi.org/10.1016/j.ijrobp.2010.10.008
Donaldson SB, Buckley DL, O'Connor JP, Davidson SE, Carrington BM, Jones AP, et al. Enhancing fraction measured using dynamic contrast-enhanced MRI predicts disease-free survival in patients with carcinoma of the cervix. Br J Cancer 2010; 102: 23-6. http://dx.doi.org/10.1038/sj.bjc.6605415
Cooper RA, Carrington BM, Loncaster JA, Todd SM, Davidson SE, Logue JP, et al. Tumour oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix. Radiother Oncol 2000; 57: 53–9. http://dx.doi.org/10.1016/S0167-8140(00)00259-0
Hawighorst H, Weikel W, Knapstein PG, Knopp MV, Zuna I, Schoenberg SO, et al. Angiogenic activity of cervical carcinoma: assessment by functional magnetic resonance imaging-based parameters and a histomorphological approach in correlation with disease outcome. Clin Cancer Res 1998; 4: 2305–12.
Loncaster JA, Carrington BM, Sykes JR, Jones AP, Todd SM, Cooper RA, et al. Prediction of radiotherapy outcome using dynamic contrast enhanced MRI of carcinoma of the cervix. Int J Radiat Oncol Biol Phys 2002; 54: 759–67. http://dx.doi.org/10.1016/S0360-3016(02)02972-3
Mayr NA, Yuh WT, Jajoura D, Wang JZ, Lo SS, Montebello JF, et al. Ultra-early predictive assay for treatment failure using functional magnetic resonance imaging and clinical prognostic parameters in cervical cancer. Cancer 2010; 116: 903-12. http://dx.doi.org/10.1002/cncr.24822
Andersen EK, Hole KH, Lund KV, Sundfør K, Kristensen GB, Lyng H, et al. Dynamic contrast-enhanced MRI of cervical cancers: temporal percentile screening of contrast enhancement identifies parameters for prediction of chemoradioresistance. Int J Radiat Oncol Biol Phys 2012; 82: e485-92. http://dx.doi.org/10.1016/j.ijrobp.2011.05.050
Yang X, Knopp MV. Quantifying tumor vascular heterogeneity with dynamic contrast-enhanced magnetic resonance imaging: a review. J Biomed Biotechnol 2011; 2011: 732848.
Venkatasubramanian R, Arenas RB, Henson MA, Forbes NS. Mechanistic modelling of dynamic MRI data predicts that tumour heterogeneity decreases therapeutic response. Br J Cancer 2010; 103: 486-97. http://dx.doi.org/10.1038/sj.bjc.6605773
Grigsby PW. The prognostic value of PET and PET/CT in cervical cancer. Cancer Imaging 2008; 8: 146-55. http://dx.doi.org/10.1102/1470-7330.2008.0022
Kidd EA, Siegel BA, Dehdashti F, Rader JS, Mutic S, Mutch DG, et al. Clinical outcomes of definitive intensity-modulated radiation therapy with fluorodeoxyglucose-positron emission tomography simulation in patients with locally advanced cervical cancer.Int J Radiat Oncol Biol Phys 2010; 77: 1085- 91. http://dx.doi.org/10.1016/j.ijrobp.2009.06.041
Dehdashti F, Grigsby PW, Lewis JS, Laforest R, Siegel BA, Welch MJ. Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med 2008; 49: 201-5. http://dx.doi.org/10.2967/jnumed.107.048520
Vilarino-Varela MJ, Taylor A, Rockall AG, Reznek RH, Powell ME. A verification study of proposed pelvic lymph node localisation guidelines using nanoparticle-enhanced magnetic resonance imaging. Radiother Oncol 2008; 89: 192-6. http://dx.doi.org/10.1016/j.radonc.2008.07.023
Keller TM, Michel SC, Fröhlich J, Fink D, Caduff R, Marincek B, et al. USPIO-enhanced MRI for preoperative staging of gynecological pelvic tumors: preliminary results. Eur Radiol 2004; 14: 937-44. http://dx.doi.org/10.1007/s00330-004-2258-8
Booth SJ, Pickles MD, Turnbull LW. In vivo magnetic resonance spectroscopy of gynaecological tumours at 3.0 Tesla. Br J Obstet Gynaecol 2009; 116: 300–3. http://dx.doi.org/10.1111/j.1471-0528.2008.02007.x
De Silva SS, Payne GS, Morgan VA, Ind TE, Shepherd JH, Barton DP, et al. Epithelial and stromal metabolite changes in the transition from cervical intraepithelial neoplasia to cervical cancer: An in vivo 1H magnetic resonance spectroscopic imaging study with ex vivo correlation. Eur Radiol 2009; 19: 2041–8. http://dx.doi.org/10.1007/s00330-009-1363-0
Schmid MP, Kirisits C, Nesvacil N, Dimopoulos JC, Berger D, Pötter R. Local recurrences in cervical cancer patients in the setting of image-guided brachytherapy: a comparison of spatial dose distribution within a matched-pair analysis. Radiother Oncol 2011; 100: 468-72. http://dx.doi.org/10.1016/j.radonc.2011.08.014
Park HC, Shimizu S, Yonesaka A, Tsuchiya K, Ebina Y, Taguchi H, et al. High dose three-dimensional conformal boost using the real-time tumor tracking radiotherapy system in cervical cancer patients unable to receive intracavitary brachytherapy. Yonsei Med J 2010; 51: 93-9. http://dx.doi.org/10.3349/ymj.2010.51.1.93
Yoshida K, Yamazaki H, Takenaka T, Kotsuma T, Yoshida M, Furuya S, et al. A dose-volume analysis of magnetic resonance imaging-aided high-dose-rate image-based interstitial brachytherapy for uterine cervical cancer. Int J Radiat Oncol Biol Phys 2010; 77: 765-72. http://dx.doi.org/10.1016/j.ijrobp.2009.05.027
Gupta AK, Vicini FA, Frazier AJ, Barth-Jones DC, Edmundson GK, Mele E, et al. Iridium-192 transperineal interstitial brachytherapy for locally advanced or recurrent gynecological malignancies. Int J Radiat Oncol Biol Phys 1999; 43: 1055-60. http://dx.doi.org/10.1016/S0360-3016(98)00522-7
Demanes DJ, Rodriguez RR, Bendre DD, Ewing TL. High dose rate transperineal interstitial brachytherapy for cervical cancer: High pelvic control and low complication rates. Int J Radiat Oncol Biol Phys 1999; 45: 105-12. http://dx.doi.org/10.1016/S0360-3016(99)00124-8
Beriwal S, Bhatnagar A, Heron DE, Selvaraj R, Mogus R, Kim H, et al. High-dose-rate interstitial brachytherapy for gynecologic malignancies. Brachytherapy 2006; 5: 218-22. http://dx.doi.org/10.1016/j.brachy.2006.09.002
Hsieh CH, Wei MC, Hsu YP, Chong NS, Chen YJ, Hsiao SM, et al. Should helical tomotherapy replace brachytherapy for cervical cancer? Case report BMC Cancer 2010; 10: 637. http://dx.doi.org/10.1186/1471-2407-10-637
Su WH, Chuang PC, Huang EY, Yang KD. Radiationinduced increase in cell migration and metastatic potential of cervical cancer cells operates via the K-Ras pathway. Am J Pathol 2012; 180: 862-71. http://dx.doi.org/10.1016/j.ajpath.2011.10.018
Pearcey R, Brundage M, Drouin P, Jeffrey J, Johnston D, Lukka H, et al. Phase III trial comparing radical radiotherapy with and without cisplatin chemotherapy in patients with advanced squamous cell cancer of the cervix. J Clin Oncol 2002; 20: 966-72. http://dx.doi.org/10.1200/JCO.20.4.966
Datta NR, Agrawal S. Does the evidence support the use of concurrent chemoradiotherapy as a standard in the management of locally advanced cancer of the cervix, especially in developing countries? Clin Oncol (R Coll Radiol) 2006; 18: 306-12. http://dx.doi.org/10.1016/j.clon.2005.12.005
Polyzos NP, Mauri D, Ioannidis JP. Guidelines on chemotherapy in advanced stage gynecological malignancies: an evaluation of 224 professional societies and organizations. PLoS One 2011; 6: e20106. http://dx.doi.org/10.1371/journal.pone.0020106
McNeil C. New standard of care for cervical cancer sets stage for next questions. J Natl Cancer Inst 1999; 91: 500-1. http://dx.doi.org/10.1093/jnci/91.6.500a
Whitney CW, Sause W, Bundy BN. Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stage IIB-IVA carcinoma of the cervix with negative para-aortic lymph nodes: a Gynecologic Oncology Group and southwest Oncology Group study. J Clin Oncol 1999; 17: 1339–48.
Rose PG, Bundy BN, Watkins EB. Concurrent cisplatinbased radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med 1999; 340: 1144–53. http://dx.doi.org/10.1056/NEJM199904153401502
Eifel PJ, Winter K, Morris M, Levenback C, Grigsby PW, Cooper J, et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of radiation therapy oncology group trial (RTOG) 90-01. J Clin Oncol 2004; 22: 872-80. http://dx.doi.org/10.1200/JCO.2004.07.197
Morris M, Eifel PJ, Lu J, Grigsby PW, Levenback C, Stevens RE, et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med 1999; 340: 1137-43. http://dx.doi.org/10.1056/NEJM199904153401501
Peters WA 3rd, Liu PY, Barrett RJ 2nd, Stock RJ, Monk BJ, Berek JS, et al. Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol 2000; 18: 1606- 13.
Durand RE, Aquino-Parsons C. Predicting response to treatment in human cancers of the uterine cervix: sequential biopsies during external beam radiotherapy. Int J Radiat Oncol Biol Phys 2004; 58: 555-60. http://dx.doi.org/10.1016/j.ijrobp.2003.09.066
Green J, Kirwan J, Tierney J, Vale C, Symonds P, Fresco L, et al. Concomitant chemotherapy and radiation therapy for cancer of the uterine cervix. Cochrane Database Syst Rev 2005; (3): CD002225.
Lukka H, Hirte H, Fyles A, Thomas G, Elit L, Johnston M, et al. Cancer Care Ontario Practice Guidelines Initiative Gynecology Disease Site Group. Concurrent cisplatin-based chemotherapy plus radiotherapy for cervical cancer--a metaanalysis. Clin Oncol (R Coll Radiol) 2002; 14: 203-12. http://dx.doi.org/10.1053/clon.2002.0076
Chemoradiotherapy for Cervical Cancer Meta-analysis Collaboration (CCCMAC). Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: individual patient data meta-analysis. Cochrane Database Syst Rev 2010; (1): CD008285.
Ryu SY, Lee WM, Kim K, Park SI, Kim BJ, Kim MH, et al. Randomized clinical trial of weekly vs. triweekly cisplatinbased chemotherapy concurrent with radiotherapy in the treatment of locally advanced cervical cancer. Int J Radiat Oncol Biol Phys 2011; 81: e577-81. http://dx.doi.org/10.1016/j.ijrobp.2011.05.002
Tang J, Tang Y, Yang J, Huang S. Chemoradiation and adjuvant chemotherapy in advanced cervical adenocarcinoma. Gynecol Oncol 2012; 125: 297-302. http://dx.doi.org/10.1016/j.ygyno.2012.01.033
Dueñas-González A, Zarbá JJ, Patel F, Alcedo JC, Beslija S, Casanova L, et al. Phase III, open-label, randomized study comparing concurrent gemcitabine plus cisplatin and radiation followed by adjuvant gemcitabine and cisplatin versus concurrent cisplatin and radiation in patients with stage IIB to IVA carcinoma of the cervix. J Clin Oncol 2011; 29: 1678-85. http://dx.doi.org/10.1200/JCO.2009.25.9663
Lorvidhaya V, Chitapanarux I, Sangruchi S, Lertsanguansinchai P, Kongthanarat Y, Tangkaratt S, et al. Concurrent mitomycin C, 5-fluorouracil, and radiotherapy in the treatment of locally advanced carcinoma of the cervix: a randomized trial. Int J Radiat Oncol Biol Phys 2003; 55: 1226-32. http://dx.doi.org/10.1016/S0360-3016(02)04405-X
Meira DD, de Almeida VH, Mororó JS, Nóbrega I, Bardella L, Silva RL, et al. Combination of cetuximab with chemoradiation, trastuzumab or MAPK inhibitors: mechanisms of sensitisation of cervical cancer cells. Br J Cancer 2009; 101: 782-91. http://dx.doi.org/10.1038/sj.bjc.6605216
Lanciano R. Optimizing radiation parameters for cervical cancer. Semin Radiat Oncol 2000; 10: 36-43. http://dx.doi.org/10.1016/S1053-4296(00)80019-3
Perez CA, Grigsby PW, Castro-Vita H, Lockett MA. Carcinoma of the uterine cervix. I. Impact of prolongation of overall treatment time and timing of brachytherapy on outcome of radiation therapy. Int J Radiat Oncol Biol Phys 1995; 32: 1275-88. http://dx.doi.org/10.1016/0360-3016(95)00220-S
Chen SW, Liang JA, Yang SN, Ko HL, Lin FJ. The adverse effect of treatment prolongation in cervical cancer by highdose- rate intracavitary brachytherapy. Radiother Oncol 2003; 67: 69-76. http://dx.doi.org/10.1016/S0167-8140(02)00439-5
Nag S, Chao C, Erickson B. for the American Brachytherapy Society. The American Brachytherapy Society recommendations for low-dose-rate brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys 2002; 52: 33–48. http://dx.doi.org/10.1016/S0360-3016(01)01755-2
Kavanagh BD, Gieschen HL, Schmidt-Ullrich RK, Arthur D, Zwicker R, Kaufman N, et al. A pilot study of concomitant boost accelerated superfractionated radiotherapy for stage III cancer of the uterine cervix. Int J Radiat Oncol Biol Phys 1997; 38: 561-8. http://dx.doi.org/10.1016/S0360-3016(97)89484-9
Kavanagh BD, Segreti EM, Koo D, Amir C, Arthur D, Wheelock J, et al. Long-term local control and survival after concomitant boost accelerated radiotherapy for locally advanced cervix cancer. Am J Clin Oncol 2001; 24: 113-9. http://dx.doi.org/10.1097/00000421-200104000-00002
Ohno T, Nakano T, Kato S, Koo CC, Chansilpa Y, Pattaranutaporn P, et al. Accelerated hyperfractionated radiotherapy for cervical cancer: multi-institutional prospective study of forum for nuclear cooperation in Asia among eight Asian countries. Int J Radiat Oncol Biol Phys 2008; 70: 1522-9. http://dx.doi.org/10.1016/j.ijrobp.2007.08.038
Souhami L, Gil R, Allan S. A randomized trial of chemotherapy followed by pelvic radiation therapy in stage IIIB carcinoma of the cervix. Int J Radiat Oncol Biol Phys 1991; 9: 970.
Wong LC, Ngan HY, Cheung AN, Cheng DK, Ng TY, Choy DT. Chemoradiation and adjuvant chemotherapy in cervical cancer.J Clin Oncol 1999; 17: 2055-60.
Lim K, Small W Jr, Portelance L, Creutzberg C, Jürgenliemk- Schulz IM, Mundt A, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys 2011; 79: 348-55. http://dx.doi.org/10.1016/j.ijrobp.2009.10.075
Lim K, Kelly V, Stewart J, Xie J, Cho YB, Moseley J, et al. Pelvic radiotherapy for cancer of the cervix: is what you plan actually what you deliver? Int J Radiat Oncol Biol Phys 2009; 74: 304-12. http://dx.doi.org/10.1016/j.ijrobp.2008.12.043
Uno T, Isobe K, Ueno N, Kobayashi H, Sanayama Y, Mitsuhashi A, et al. Vessel-contouring-based pelvic radiotherapy in patients with uterine cervical cancer. Jpn J Clin Oncol 2009; 39: 376-80. http://dx.doi.org/10.1093/jjco/hyp029
Hasselle MD, Rose BS, Kochanski JD, Nath SK, Bafana R, Yashar CM, et al. Clinical outcomes of intensity-modulated pelvic radiation therapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys 2011; 80: 1436-45. http://dx.doi.org/10.1016/j.ijrobp.2010.04.041
Marnitz S, Lukarski D, Köhler C, Wlodarczyk W, Ebert A, Budach V, et al. Helical tomotherapy versus conventional intensity-modulated radiation therapy for primary chemoradiation in cervical cancer patients: an intraindividual comparison. Int J Radiat Oncol Biol Phys 2011; 81: 424-30. http://dx.doi.org/10.1016/j.ijrobp.2010.06.005
Song WY, Huh SN, Liang Y, White G, Nichols RC, Watkins WT, et al. Dosimetric comparison study between intensity modulated radiation therapy and three-dimensional conformal proton therapy for pelvic bone marrow sparing in the treatment of cervical cancer. J Appl Clin Med Phys 2010; 11: 3255.
Kagei K, Tokuuye K, Okumura T, Ohara K, Shioyama Y, Sugahara S, et al. Long-term results of proton beam therapy for carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 2003; 55: 1265-71. http://dx.doi.org/10.1016/S0360-3016(02)04075-0
Tacev T, Ptackova B, Strnad V. Californium-252 (252Cf) versus conventional gamma radiation in the brachytherapy of advanced cervical carcinoma: Long-term treatment results of a randomized study. Strahlenther Onkol 2003; 179: 377–84.
Lei X, Qian CY, Qing Y, Zhao KW, Yang ZZ, Dai N, et al. Californium-252 brachytherapy combined with external-beam radiotherapy for cervical cancer: long-term treatment results. Int J Radiat Oncol Biol Phys 2011; 81: 1264-70. http://dx.doi.org/10.1016/j.ijrobp.2010.08.039
Seo Y, Yoo SY, Kim MS, Yang KM, Yoo HJ, Kim JH, et al. Nomogram prediction of overall survival after curative irradiation for uterine cervical cancer. Int J Radiat Oncol Biol Phys 2011; 79: 782-7. http://dx.doi.org/10.1016/j.ijrobp.2009.11.054