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Abstract: Identification of candidate genes combined with gene expression profiling carries importance to facilitate the 
molecular basis of salt stress response in plants. Here, cDNA-AFLP was used to compare the transcribed sequences 
among two bread and two durum wheat genotypes with different levels of salt tolerance. Transcript derived fragments 
(TDFs) screened on polyacrylamide gels and 36 salt stress induced unique fragments were detected in salt tolerant 
bread wheat genotype (Alpu cv.). The fragment size of these 36 TDFs was ranged between 99bp to 252bp. Full 
sequence information of 14 TDFs were obtained after cloning, then GeXP analyzer-based multiplex qRT-PCR assay was 
performed on leaf tissue derived from 12 TDFs. Targeted gene expression levels of two TDFs (TDF4-GT066302 and 
TDF11-GT066301) were showed clear upregulation in salt tolerant bread wheat genotype (Alpu cv.) and they were 
matched with hypothetical proteins. Especially, gene expression level of GT066301 was increased as 3.28 fold at 27th 
hours of salt stress for salt tolerant genotype. According to blastx similarity results, out of 14 sequenced fragments, two 
TDFs were closely matched with “cytochrome P450 monooxygenase” protein while four of them matched with Oryza 
“hypothetical” and “unknown” proteins. Outputs of this study might ensure comparative data for hypothetical protein gene 
expression and new useful alleles in response to salt stress in wheat. 
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INTRODUCTION 

Salt is a defective compound for plant growth and it 
has been accepted as one of the main environmental 
bottlenecks for global agricultural practices. Plants 
undergo a variety of physiological and molecular 
rearrangements to cope with negative effects of salt [1]. 
Today, studies conducted to find out the effects of salt 
on wheat and other major cereals are still an ongoing 
work. Basically, there is a large durum and bread 
wheat genotype diversity for responding to the salt 
stress [2], and salt-tolerant genotypes have been 
employed to isolate the conferring tolerance related 
genes [3].  

On the other side, physiological screening studies in 
wheat indicated the efficient role of sodium excluders 
and high affinity potassium ion transporters [4]. To 
examine this, a Nax2 locus from wheat A genome 
progenitor introduced to durum wheat [5, 6]. In addition, 
wheat D genome is closely covered by genes 
conferring salt tolerance. So, it is one of the examples 
of carrying an important potassium/sodium transporter 
gene (Kna1) [7, 8]. Significanly, the role of potassium 
(K+) has been found in wheat roots and K+ flux 
accepted as a physiological key marker that could be  
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used to identify salt tolerant plants [9]. Thus, these 
traits highlighted the hexaploid wheat as an important 
crop for understanding the salt stress response. 

Moreover, transcript profiling on wheat has been 
showed many up and down regulated genes [10, 11]. 
There are different classes of methods released for 
transcriptome screening. One of them is cDNA 
Amplified Fragment Length Polymorphism (AFLP) that 
was used as a PCR based genome wide gene 
expression tool [12, 13]. The advantage of this technic 
is no need to previous sequence information [14]. In 
plants, transcript profiling studies have been reported in 
diverse species such as barley [15], rice [16], foxtail 
millet [17, 18], Brachypodium [19] and wheat [20, 11, 
21-23]. In detail, identification of cadmium-regulated 
genes in Brassica juncea L. [24], aluminum-regulated 
genes in rice [25] and gene expression analysis under 
cold stress in chickpea [26] have been investigated 
with transcript profiling. 

In this study, cDNA AFLP was used to screen the 
transcript differences between leaf tissues of two 
durum and two bread wheat genotypes which have 
varying levels of salt response. Gene expression levels 
of salt stress induced and salt tolerant genotype 
derived TDFs were comparatively analyzed by using 
multiplex qRT-PCR in all genotypes. Findings 
suggested a positive correlation between hypothetical 
proteins and salt tolerance in wheat. 
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MATERIALS AND METHODS 
Plant Material and Experimental Set-Up  

In this study, two bread wheat; (Triticum aestivum L. 
cvs.) Alpu (salt-tolerant), ES14 (salt-sensitive) and two 
durum wheat; (Triticum durum L. cvs.) Meram (salt-
tolerant), C1252 (salt-sensitive) genotypes were used. 
Seeds were provided from International Agricultural 
Research Institute, Konya-Turkey. Four week-old 
seedlings were transferred into half strength 
Hoagland’s nutrient solution at pH 6.0 [27]. Aeration in 
nutrient media was ensured by air pumps in growth 
chamber at 22oC, with photoperiod of 16hrs light/8hrs 
dark. Salt concentration was gradually increased at 
daily periods until reaching the application 
concentration of 150mM NaCl. Previously, this salt 
concentration has been approved in several reports 
and caused exact differences at physiologic, cellular 
and molecular level in wheat [28, 6, 29, 30]. Leaf 
tissues from ten independent seedlings were harvested 
at 8th and 27th hours and immediately frozen in liquid 
nitrogen and stored at -80 oC until RNA extraction. 

Total RNA Isolation and cDNA AFLP Analysis 

Total RNA from leaf tissues were isolated with Trizol 
Reagent (Roche). Formaldehyde Agarose gels (1%) 
and NanoDrop Photometer (Wilmington, USA) 
measurements were used to check RNA quality and 
quantity respectively. Samples diluted to final 
concentration of 1 µg/µl after DNaseI treatment 
(Fermentas). cDNA was synthesized from the mRNA 
using the cDNA synthesis system kit (Invitrogen) with 
minor modifications. 

cDNA AFLP was carried out with minor 
modifications according to [31]. Double stranded cDNA 
(500 ng) was digested with PstI and MseI restriction 
enzymes at 37°C for 3 hours. Single stranded 
oligonucleotides used as adapter sequences; MseI 
Adapter; 5'-GACGATGAGTCCTGAG-3' and 3'-
TACTCAGGACTCAT-5', PstI Adapter; 5'-
CTCGTAGACTGCGTACATGCA-3' and 3'-
TGTACGCAGTCTAC-5'. Digested cDNA was attached 
with these adapter fragments. Ligated products were 
pre-amplified under the conditions of 94ºC 30 sec, 
56ºC 1 min, 72ºC 1 min, for 20 cycles by using pre-
amplification primers PstI: 5'-GACTGCGTACCAATTC-
3', MseI: 5'-GATGAGTCCTGAGTAA-3'. Pre-amplified 
products were diluted as 1:5 and screened with 40 
different selective primer combinations (Table 1). 
Samples were subjected to the following selective 
amplification thermocycler profile; [(94ºC, 60sec; 65ºC 
60sec; 72ºC, 60sec);(94ºC, 60sec; 65-56ºC (decrease 

1ºC each cycle), 60sec; 72ºC, 90sec) x 10], (94ºC, 
60sec; 56ºC, 60sec; 72ºC, 60sec) x 22 cycle; 
+10°C(∞). Five microliters of AFLP products were heat-
denatured and separated on 6% polyacrylamide gel in 
Sequi-Gen GT Sequencing Cell System (Bio-Rad) and 
run for 3.5 hrs under 200V at 50°C with 0.5X TBE 
electrophoresis buffer and immediately silver stained. 
TDFs presented only in the salt tolerant wheat (Alpu 
cv.) were discriminated to re-amplify under the same 
selective PCR conditions. Re-amplified products were 
run on 3% agarose gel for verifying the fragment size 
and TDFs were purified with PCR clean-up kit (Qiagen) 
according to the manufacturer’s instructions. 

Table 1: List of Corresponding Selective Primer 
Sequences used in cDNA AFLP Reactions 

Name Primer Sequence (5’-3’) 

P-GAC GACTGCGTACATGCAGAC 

P-TGG GACTGCGTACATGCATGG  

P-GTT GACTGCGTACATGCAGTT 

P-CCA GACTGCGTACATGCACCA 

M-ACC GATGAGTCCTGAGTAAACC 

M-ACG GATGAGTCCTGAGTAAACG  

M-CGA GATGAGTCCTGAGTAACGA 

M-CGT GATGAGTCCTGAGTAACGT  

M-CAA GATGAGTCCTGAGTAACAA 

M-CAG GATGAGTCCTGAGTAACAG 

M-CAT GATGAGTCCTGAGTAACAT 

M-CAC GATGAGTCCTGAGTAACAC  

M-CCA GATGAGTCCTGAGTAACCA 

M-CCT GATGAGTCCTGAGTAACCT 

 
Sequencing and Data Mining of Differentially 
Expressed Transcripts under Salt Stress 

After fragment purification from agarose gel, TDFs 
were cloned into pGEM-T Easy vector (Promega) by 
following the manufacturer’s instructions. Ampicillin 
containing selective LB (Difco) used as growth media 
for transformated DH5α competent cells with 
corresponding TDFs [32]. Selective growth media 
containing ampicillin, X-Gal (Sigma) and IPTG (Sigma) 
incubated at 37oC overnight. Before plasmid DNA 
isolation, blue/white colony selection performed to 
screen the success of ligation and transformation 
process. Plasmid purification was done by using 
Plasmid DNA isolation miniprep kit (Qiagen) and the 
insert size was checked with colony PCR using the 
T7/SP6 primers. Five technical replicates used in 
colony PCR of each TDF. DNA sequencing performed 
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on the plasmid by using -47 sequencing primer (1.6 
pmol/µl) and reactions were repeated for three times 
with puc18 control template that was provided by the 
GenomeLab DTCS Starter Kit (Beckman Coulter, 
S802018). Thus, accuracy of sequencing reaction and 
system (Beckman Coulter GeXP GenomeLab Genetic 
Analysis) checked out. Sequence similarities were 
analysed with Blastx program [33] which was defined in 
National Center for Biotechnology Information (NCBI) 
GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The 
threshold of positive match set to 25% identity and 
higher values. E-value cut-off was accepted as =1e-5. A 
total of 14 T. aestivum specific TDFs were submitted to 
the dbEST NCBI, Bethesda, MD, USA. Corresponding 
GenBank accession numbers defined from GT066300 
to GT066310 and GR972470, GR972471, GR972472. 
TDF numbers were condensed from 14 to 12 by using 
ClustalW sequence alignment tool. Among these, four 
TDFs were gave clear distinguishable peaks after 
multiplex qRT-PCR and their gene expression levels 
were assessed between bread and durum wheat leaf 
samples. 

Evaluation of Expression Data by using 
Fluorescent-Based Multiplex Quantitative RT-PCR 

Target specific primers (Table 2) were designed by 
using eXpress Designer module of the eXpress Profiler 
software (Beckman Coulter). First strand cDNA 
synthesis was performed with reverse transcriptase, 
RT buffer (1X) supplied with the GeXP Start Kit 
(Beckman Coulter). Later, 2 µl gene-specific chimeric 
reverse primer mix (0.5µM) added to the reaction 
mixture. Thermal cycler reaction condition set to: 48ºC 
for 1 min; 37ºC for 5 min; 42ºC for 60 min; 95ºC for 5 
min; hold at 4ºC. An aliquot (9.3 µl) of the first RT-PCR 

mixed with 4 µl PCR Buffer (5X) of Beckman Coulter 
GeXP Start Kit that was containing fluorescently-
labeled universal forward primer. An unlabeled 
universal reverse primer, dNTP (10µM), 0.7 µl Thermo-
Start DNA polymerase (5U/ µl) (ABgene), 4 µl MgCl2 
(25mM), and 2 µl of gene-specific forward chimeric 
primer plex (0.2 µM) added to get a final volume of 20 
µl. PCR program was set to following conditions: 1 
cycle of 95ºC for 10 min followed by 35 cycles of 94ºC 
30 sec, 55ºC 30 sec, 68ºC 1 min; hold at 4ºC. 
Fluorescently labeled final PCR products separated via 
capillary electrophoresis using with the following 
conditions: capillary temperature at 50ºC, denaturation 
at 90ºC for 120 sec, injection for 30 sec at 2.0 kV, 
separation at 6.0 kV for 35 min. Output data were 
analyzed on both Fragment Analysis module and 
eXpress Analysis module of the eXpress Profiler 
software respectively. PCR reactions performed with 
two biological and two technical replicates and peak 
area calculations were done automotically by eXpress 
Analysis module. Peak heights were selected, 
correcting for preferential amplification of smaller 
fragments (normalization) was calculated based on the 
RFU (relative flourescense unit) intensity values of 
each peak. The relative gene expression level for each 
group was calculated by dividing mean average value 
of treatment to control. Following equations were used 
in the calculations. (i) control group gene expression 
rate= peak area value of control group gene / peak 
area value of control group actin gene; (ii) treatment 
group gene expression rate= peak area value of 
treatment group gene / peak area value of treatment 
group actin gene. Relative range of gene expression 
rate= (ii)/ (i). 

Table 2: Primer Sequences of four Selected TDFs and Internal Housekeeping Control Gene (actin) used in Multiplex 
qRT-PCR Amplifications. Bold Letters Represent the Selective Part of the Primer and Italic Letters are 
Complementary Parts for the First Strand cDNA Amplification Primers 

GenBank 
Accession Number Primer Name Product Length (bp) Primer Sequence (5’-3’) 

GR972471 TDF2 186 
F: AGGTGACACTATAGAATATGAGAGACGAAAGCTAGGGG 
R: GTACGACTCACTATAGGGAATTCTTGCGAACGTACTCCC 

GT066302 TDF4 134 
F: AGGTGACACTATAGAATAGCCTAAGATCAGGCCGAAAG 
R: GTACGACTCACTATAGGGATTCGGCTAACCTAGCCTCCT 

GT066305 TDF6 164 
F: AGGTGACACTATAGAATACCG GCGAGGAGCTTTAGTAG 
R: GTACGACTCACTATAGGGAGAATTTATGGTCGCGTTTTGA 

GT066301 TDF11 122 
F: AGGTGACACTATAGAATAGGGTGAGTCAGGGCCTAAG 
R: GTACGACTCACTATAGGGATCCGTACCAACAAGGGGTAG 

 Actin 145 
F: AGGTGACACTATAGAATACCCTCTATGCAAGTGGTCGT 
R: GTACGACTCACTATAGGGAGAAGAATGGCATGAGGAAGC 
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RESULTS  
Quantitative and Functional Analysis of TDFs 

By applying cDNA-AFLP transcript profiling with 
forty primer combinations, approximately 500 AFLP 
fragments were obtained from both control and salt 
applied groups of bread wheat genotypes after 8th 
hours of stress. Later, a low proportional decline (6%) 
occurred for the numbers of bread wheat specific 
fragments at 27th hours. An example of cDNA AFLP 
profile generated by PstI+GTT/ MseI+CGT primer pairs 
displayed in Figure 1. 

Specifically, differentially expressed 26 and 10 
unique salt stress induced TDFs were observed only in 
salt tolerant genotype Alpu cv. at 8th and 27th hours of 
salt application respectively. After reamplification 
studies, 14 out of 36 salt stress induced reproducible 
fragments compared with proteins in public databases. 
According to Blastx analysis, some TDFs were found to 
be involved in different protein groups derived from 

Zea, Oryza and Citrullus. Whole sequenced transcripts 
were submitted to NCBI GenBank. Significantly, the 
highest match score was 100% with “Cytochrome P450 
like TBP protein” for GT066307, while GT066308 was 
similar to the “NAD dependent-epimerase/dehydratase 
family protein” at level of 32% as represented in Table 
3. Consequently, 12 TDFs out of 14 showed homology 
to known expressed sequences and 2 TDFs 
(GT066305, GT066309) displayed no homology with 
any protein in the database.  

Expression Patterns of Selected TDFs 

AFLP derived comparative fragment analysis 
performed between control and treatment groups of all 
wheat genotypes. Salt stress induced TDFs extracted 
for sequencing and specific multiplex primer sets were 
designed for gene expression profiling. Beckman GeXP 
based multiplex PCR assay provided a high sensitivity 
and allowed us for rapid evaluation of gene expression 
with its internal gene control in the same reaction tube. 

 

Figure 1: Silver stained polyacrylamide gel profile obtained from PstI+GTT/ MseI+CGT selective primer combination. a and b 
indicates the fragment profiles at 8th and 27th hours of salt stress respectively. TDFs tagged with black arrows. 1,3,5,7 
represents the control groups of C1252, Meram, Es14 and Alpu respectively while 2,4,6,8 represents the treatment groups of 
same genotypes. 
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For gene expression comparison, fourteen TDFs 
selected according to their reproducible pattern and 
Blast information retrieval. Among them, 12 suitable 
TDFs evaluated for further gene expression analysis by 
multiplex qRT-PCR. Two TDFs (GT066303 and 
GT066306) could not be used due to the primer 
unavailability. Four primer pairs ensured perfect 
amplicons with expected fragment size. Their 
accession numbers were GR9724471, GT066302, 
GT066305 (induced after 8 hours of stress) and 
GT066301 (induced after 27 hours of stress). Other 
primer pairs exhibited either no amplification or very 
low amplified products. 

Under salt stress, relative range of gene expression 
for GR972471 increased as 1.52 and 1.68 fold in bread 
wheat cultivars, Alpu and ES14 respectively. In 
contrary, salt sensitive durum wheat sample C1252 
displayed the lowest gene expression level for the 
same TDF as compared to other genotypes (Figure 
2a). This TDF (GR972471) also displayed 96% 
sequence similarity to Oryza sativa “unknown protein” 
(Table 3). Similarly, analysis performed for TDF4 
(GT066302) indicated that gene expression level of this 
transcript showed as 1.17 fold increment in Alpu and 

0.85 fold in ES14 versus their control groups (Figure 
2b). Moreover, relative range of gene expression for 
TDF6 (GT066305) increased as 1.07 fold for Alpu, 1.40 
fold for ES14, 1.62 fold for Meram and 1.01 fold for 
C1252 and its homology was not found in GenBank 
(Table 3). However, GT066305 only detected in salt 
treated Alpu genotype, expression comparisons clearly 
demonstrated a noncorrelative pattern for this AFLP 
based fragment (Figure 2c). In addition, it was also 
detected that gene expression level of TDF11 
(GT066301) increased at 3.28 fold in Alpu genotype 
versus its control group at 27th hour of salt stress 
(Figure 2d, Figure 3). Gene expression of GT066301 
apparently increased in Alpu as compared to other 
genotypes and similarity results indicated a close 
match with Oryza hypothetical protein at the level of 
95% for this TDF (Table 3). 

In the current study, Alpu was displayed an up-
regulated gene expression pattern that was evidently 
revealed in examined TDFs (TDF4 and TDF11) by 
qRT-PCR (Figure 2b, 2d) and, the remaining 
genotypes were varied in their gene expression. 
Results confirmed the time dependent profiles of 
hypothetical proteins in wheat and their gene 

 

Figure 2: Bar graph display of relative range of expression level according to the estimation of T(salt treatment)/C(control) 
values. a- TDF2 (GR9724471), b- TDF4 (GT066302), c-TDF6 (GT066305) induced after 8 hours of salt stress and d-TDF11 
(GT066301) induced after 27 hours of salt stress.  
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expression regulation under salt stress. Salt stress 
induced TDFs not only exhibited a different gene 
expression levels among bread wheat genotypes but 
also confirmed in durum wheat genotypes at different 
tolerance levels. 

DISCUSSION  

Wheat is a polyploid crop and sequencing of its 
whole genome has been nearly completed [34]. 
Verification of stress related genome regions, either up-
regulated or down-regulated pattern, can help us to 
identify and select the most applicable individuals and 
populations during stress tolerant crop breeding. In 
addition, time dependent expression of stress-

responsive/inducible genes have been enhanced by 
the identification of new gene regions related to 
tolerance [35, 36, 37]. In the frame of the omic 
technology applications, transcript profiling is one of the 
feasible technics [38]. In this study, transcript profiling 
approach have been performed to screen differentially 
expressed cDNA AFLP derived fragments in bread and 
durum wheat genomes under short term salt stress. 
Significantly, multiplex qRT-PCR analysis showed that 
relative range of AFLP derived TDF (GT066301) gene 
expression was up regulated as 3.28 fold under salt 
stress for only in salt tolerant genotype Alpu and a 
sharp decrease was occurred for the rest of the 
genotypes at 27th hours of stress. Considerable 
variations were identified between contrasting bread 

 

Figure 3: A comparative chromatogram overview of fluorescently labelled peak (rfuxmm2)x103 of actin and TDF11 (GT066301) 
for Alpu (a-control, b-treatment) and ES14 (c-control; d-treatment) genotypes at 27th hours of salt stress. Red fluorescent dye 
being reserved for the size marker and targeted gene was in blue flourescence.  
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and durum wheat genotypes in respect to gene 
expression levels and cDNA AFLP patterns. 
Previously, same differences was reported related to 
salt stress among Triticale members [39]. Alterations at 
genome level consistent with the obtained data and 
suggested that many of the gene expression changes 
were found to be associated with polyploidy [40]. 

In this work, the results of Blastx analysis based on 
sequence alignment indicated that two TDFs 
(GT066305, GT066309) showed no homology and four 
stress responsive transcripts (GT066302, GT066303, 
GT066301, GT066310) were predicted as 
‘hypothetical’. Major alterations in transcriptional 
activities were noted to accompany the response of 
plants against to salt stress. As pointed out by [41] and 
[42], hypothetical and putative proteins which include 
genes encoding proteins with uncharacterized domains 

have been relevant to salinity. Relationship between 
compatible solutes and salt stress tolerance has been 
revealed alternative parameters for selection of tolerant 
plants. In this respect, proline is one of the compatible 
solutes and its accumulation is increased under salt 
stress in transgenic Arabidopsis after transferring 
Triticum aestivum salt-related hypothetical protein 
(TaSRHP) [43]. Genes induced under salt stress has 
been investigated in some other grasses and a novel 
sheepgrass gene named as “LcSAIN1” showed close 
similarity with hypothetical proteins from wheat, barley 
and other closely related crops. In transgenic 
Arabidopsis and rice, an overexpression pattern of 
LcSAIN1 also caused an increase in the amount of 
transcription factors, compatible solutes which enable 
plants more tolerant during salt stress [44]. Studies 
resulted the hypothetical proteins after salt treatement 
in different plants such as rice [45]. In a recent example 

Table 3: Blastx Homologies of cDNA-AFLP Fragments in NCBI GenBank  

Accession  
Number Blast homology  % Max* Identity E- value** Expression 

Pattern 
Length 

(bp) 

GR972470 similar to MGC53016 protein Strongylocentrotus 
purpuratus 37 2.4 8th 229 

GR972471 Unknown protein (Oryza sativa Japonica Group) 
(AAV44205) 96 2e-26 8 th 252 

GR972472 GK16754 (Drosophila willistoni) gene product 
from transcript 44 9.3 8 th 219 

GT066302 Hypothetical protein (Oryza sativa) (Japonica 
cultivar-group) (AAT76998) 95 1e-06 8 th 129 

GT066303 Hypothetical protein (Oryza sativa) (japonica 
cultivar-group) (AAT76998.1) 96 4e-06 8 th 99 

GT066304 Probable cytochrome P450 monooxygenase – 
from maize (T02955) 93 7e-16 8 th 189 

GT066305 No homology - - 8 th 189 

GT066306 Probable cytochrome P450 monooxygenase – 
from maize (T02955) 93 8e-9 8 th 126 

GT066307 Cytochrome P450 like-TBP Citrullus lanatus 
(BAD26579) 100 1e-15 8 th 149 

GT066308 

NAD-dependent 
epimerase/dehydratase family protein 
(Desulfovibrio esulfuricans subsp. desulfuricans 
str. G20) (ABB36834) 

32 5.4 8 th 164 

GT066309 No homology - - 8 th 166 

GT066300 Chlorophyll a-b binding protein  
(Physcomitrella patens) 83 7e-08 27 th 245 

GT066301 hypothetical protein (Oryza sativa Japonica 
Group) (AAT76998.1) 

 
93 
 

2e-09 27 th 161 

GT066310 hypothetical protein CHLREDRAFT-155068 
(Chlamydomonas reinhardtii) 

 
95 
 

2e-07 27 th 178 

*Threshold of a positive match for %max identity>25%, **E-value cut-off=1e-5 
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of comparative assessment of Thellungiella halophila 
proteins, one fifth of the total salt stress induced 
proteins have been identified as hypothetical [46]. In 
Sorghum, [47] Ngara observed 22 hypothetical protein 
induction after salt stress application in moderately salt 
tolerant plant. In another study three protein spots that 
were matched with hypothetical proteins have been 
found in halophytic plant Nitraria sphaerocarpa after 
150mM NaCl treatment [48]. Not only for plants but 
also for bacteria, hypothetical proteins have crucial 
roles on management of stress tolerance and ensuring 
adaptation mechanisms under saline environments. In 
wheat, hypothetical HPS-like protein coding gene 
proved tolerance against to salt stress by decreasing 
carbonhydrate amount and closing stomatal aperture 
[49]. In addition, overexpression of Triticum aestivum 
salt related hypothetical protein (TaSRHP) caused an 
enhanced resistance under saline conditions in 
Arabidopsis [43]. This type of increment in hypothetical 
protein gene expression might be assumed to be a 
paralel correlation with stress tolerance for wheat and 
might be permitted to the predictions of potential role 
for this protein. Like many other discovered genes, 
GT066301 might be used as a candidate transcript for 
salt stress tolerance screening in addition the sodium 
and potassium excluders which was investigated by 
[50, 51].  

As it was listed in Table 3, TDFs assigned to three 
protein groups; photosynthesis, oxidative mechanism 
and unclassified proteins. Several functional classes 
known to be appeared during salt stress has been 
reported by [52]. As an example, GT066300 were 
detected at 27th hours of salt stress and matched with 
chlorophyll a/b-binding protein from photosynthesis 
metabolism. In the present work, there were also 
induction of two TDFs GT066304, GT066306 at 8th 
hours of salt stress and they were found to be 
sequence similarity to maize probable cytochrome 
P450 monooxygenase protein with 93% identity (Table 
3). Cytochrome P450 monooxygenase plays a central 
role in plant oxidative metabolism [53]. Based on gene 
expression profiles, a short list of candidate salt-
tolerance genes reported in wheat and cytochrome 
P450 monooxygenase gene expression detected as an 
up-regulated pattern in leaf tissues of salt tolerant 
wheat germplasm lines after 300mM NaCl application 
during 42 days [23]. In the present work, cytochrome 
P450 gene expressed occurred more earlier and at 
lower concentration of NaCl (150mM) in salt tolerant 
wheat genotype (Alpu cv.). Clearly, cytochrome P450 
expression was induced by the both concentrations of 
150mM and 300mM NaCl stress in terms of hour and 
day dependent periods respectively.  

Detailed work on cDNA clones/ESTs reported from 
salt-stressed libraries showed that transcripts 
upregulated in salt stress belong to a variety of 
functional classes such as RNA metabolism, 
transcription, signaling, translational machinery, 
transport proteins, osmoprotectants, ROS scavengers, 
cell death and ageing, photosynthesis, general 
metabolism, protein transport/turnover, other stress 
proteins, and several unclassified proteins [23, 54]. 
Genes identified, isolated and cloned by such 
approaches are needed to be functionally-
characterized. So, data mining of the transcript profiling 
can supply a systematic strategy for functional analysis 
and it may reveal the relationship between effective 
genes in salt tolerance and wheat genome [55]. 

As a defence mechanism, plants demonstrate clear 
differences in the amount of some protein groups 
including putative novel genes and genes with 
unknown function. In the sum, identification of several 
genes in response to salt stress could be helped to 
clarify the fine networks underlying salt tolerance in 
plants. Consequently, this study revealed the time 
dependent gene induction of hypothetical proteins that 
might be considered as salt stress responsive 
determinants in wheat. Thus, regulation of hypothetical 
proteins under stress conditions may enable an 
alternative protein type for classifying stress tolerant 
plants. 
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