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Abstract: The effect of iron deficiency (bicarbonate induced) on plant morphology and growth parameters were 
addressed in two apiaceae species grown in continuously aerated nutrient solution with the absence or the presence of 
Fe with the addition of bicarbonate during one month. Growth parameters, iron statut, chlorophyll and carotenoid content 
and rhizosphere acidification were studied, along with zinc and copper concentration. Our results showed a high 
chlorosis index and a significant decrease of chlorophyll content in both species but more marked in P. crispum. In 
addition, Fe deficiency restricted significantly the plant biomass production as well as leaves number and shoot length. A 
reduction in iron uptake and a variability in zinc and copper accumulation were also recorded. Moreover, a capacity of 
root acidification due to a noticeable proton release rate, accompanied by root development were observed in both 
species but more pronounced in A. graveolens. These findings suggest that the latter seems to be less sensitive to the 
stress than P. crispum. 
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1. INTRODUCTION 

Iron is essential for both plant growth and crop 
yields. Due to the insoluble nature of its chemical 
forms, ferric iron is not readily available for plants and 
approximately 30% of the arable soils are iron deficient 
on Earth. Consequently, iron deficiency is a major 
nutritional disorder in crops growing on calcareous 
soils. To uptake iron, plants develop several 
mechanisms classified in two strategies; (i) 
Characteristic of the dicotyledonous and non Poaceae 
species based on the rhizosphere acidification by the 
activation of a plasma membrane in roots and Fe3+ 
reduction by a specific nicotinamide adenine 
dinucleotide (phosphate) (NAD(P)H)-depended Fe3+ 
chelate reductase [1, 2]. (ii) Used by the Poaceae 
species involves the release of molecules known as 
phytosiderophores, chelators with high affinity for 
Fe(III) [3]. Many works were interested in comparing 
the relative effectiveness of some techniques like foliar 
sprays and Fe-EDDHA seed treatment used to reduce 
iron chlorosis [4, 5]. However, they are highly costing 
and did not improve iron nutrition plant [6, 7]. Thus, 
cultivar selection remains the most practical control 
measure for the iron deficiency chlorosis of plants. Our 
current study aimed to investigate the effect of induced 
iron deficiency on morphological and physiological 
responses of two apiaceous species (Petroselinum 
crispum Mill. and Apium graveolens L.).  
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2. MATERIAL AND METHODS 

2.1. Plant Material 

After germination for one week in Petri dishes, P. 
crispum and A. graveolens seedlings were transferred 
to a half strength aerated hydroponic nutrient solution 
diluted 4 fold for 7 days. Then, similar sized seedlings 
were transferred into a continuously aerated half-
strength Hoagland solution. The nutrient solution was 
composed of 2.5mM Ca(NO3)2, 3mM KNO3, 1mM 
MgSO4, 1mM KH2PO4, 20µM H3BO3, 2µM MnSO4, 1µM 
ZnSO4, 0.1µM (NH4)6Mo7O24 and 1µM CuSO4. Two 
treatments were employed: 48.8µM Fe (Control, +Fe), 
pH=6 and 48.8µM Fe + 0.5 g/L CaCO3 (Indirect iron 
deficiency, DI), pH=8.3. Iron solutions (Fe-EDTA) were 
prepared according to Jacobson’s method [8]. All 
experiments were carried for one month, in a growth 
chamber with a light intensity of 5000 lux, at a 
temperature (day/night) of 24/18°C, 60% relative 
humidity and a photoperiod of 14/10h. 

2.2. Leaf Chlorosis Parameters 

Two methods were used to evaluate the chlorotic 
status of young leaves. The first one was the non-
destructive index of Gildersleeve and Ocumpaugh [9] 
based on the visual chlorosis symptoms with values 
ranging from 0 (no apparent chlorosis) to 4 (severe 
chlorosis with necrosis). The second method measured 
chlorophyll and carotenoid contents according to 
Torrecilas et al. [10]. 

2.3. pH Measurements  

The evolution of the nutrient solution pH was 
monitored during the final 10 days using a pH meter 
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(Metrohm 84). The pH was initially fixed at 6 for the 
control and at 8.3 for ID medium. 

2.4. Mineral Analysis and Plant Growth 

After one month, plants were harvested and 
separated into shoots and roots. After rinsing roots with 
1% (v/v) HCl, they were washed carefully with distilled 
water. Fresh weight of different plant organs was 
measured, then samples were dried at 70°C for 72 hrs 
and dry weights were determined. Mineral composition 
of each plant fraction was determined according to 
Zorrig et al. [11]. Samples were analyzed for 
micronutrient (Fe, Zn and Cu) by means of an Atomic 
Absorption Spectrophotometer (VARIAN 220 FS). 

2.5. Statistical Analysis 

The comparison of the data between species and 
treatments was performed using the SPSS 20.0 
program. Means were compared using the Duncan’s 
test at P ≤ 0.05 when significant differences were 
found. Data shown are means of twenty four (chlorosis 
index), four (nutrient analysis) and eight (leaves 
number, shoot and root length, acidification capacity, 
plant dry weight and chlorophyll) replicates for each 
treatment. 

3. RESULTS 
3.1. Chlorosis Index and Chlorophyll Status 

No chlorosis appearance was observed in young 
leaves of plants cultivated in nutrient solution 
containing bicarbonate, during the two first days of 

treatment (Figure 1). The highest values of chlorosis 
score were recorded in P. crispum leaves. At the 
beginning of the treatment, this score increased slowly, 
and then was stabilized at about 0.79 and 0.54 
respectively in deficient plants of P. crispum and A. 
graveolens.  

As for the chlorosis index, a significant difference 
was noticed between the two species in terms of 
chlorophyll concentrations in young leaves. A. 
graveolens maintained a better chlorophyll status under 
iron deficiency conditions than P. crispum. Carotenoids 
content decreased by half in celery leaves, whereas it 
displayed no significant variation in P. crispum leaves 
(Figure 2). 

3.2. Root Acidification Capacity 

Decreasing pH values were found in the nutrient 
solution of deficient plants of both species. pH values 
were significantly reduced in celery reaching 7.33 pH 
unit after two days of the treatment, while it does not 
exceed 7.73 in the case of parsley (Figure 3). 

3.3. Plant Growth 

Leaves number per plant were slightly reduced 
under induced iron deficiency conditions for both 
species. Reduction percentage does not exceed 
5.16%. No significant variation was registered in shoot 
length. However, root growth was significantly 
enhanced respectively, by 11.79% and 9.05% for 
parsley and celery (Table 1). The whole plant dry 
matter deposition was markedly restricted by the 
bicarbonate induced Fe deficiency treatment; this 

      
Figure 1: Chlorosis index according to Gildersleeve and Ocumpaugh scale in young leaves of P. crispum and A. graveolens 
cultivated with 48.8µM Fe or with 48.8µM Fe + CaCO3 during 12 days. Different letters correspond to significantly different 
values at (P<0.05, n=24).  
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restriction was more severe in parsley than in celery. A 
considerable decline in leaf dry weight was more 
pronounced in parsley (15%) than in celery (8%). Root 
biomass was reduced by 13.37% in parsley and 2.77% 
in celery in comparison to their respective controls. In 
addition, stem biomass was restricted by the same 
treatment (11.4% for parsley and 6.5% for celery) 
(Table 1). 

3.4. Nutrient Status 

The effect of the treatment was more severe in 
roots than in shoots. Our results showed that iron 
content was strongly limited in all celery organs. An 
average reduction of 22.98% was registered in celery 
shoots (leaves and stems) and roots. However, this 
rate does not exceed 9% in parsley stems and roots 

(Table 2). As shown in table 2, no significant 
accumulation of Zn was registered in shoots for both 
species cultivated under deficient conditions. However, 
an increase of 19.76% was recorded in P. crispum 
roots. Copper accumulation was detected only in 
parsley roots and celery leaves cultivated under 
indirect iron deficiency, as compared to the control. In 
fact, the copper content was increased by 2.59 fold in 
parsley roots and by 2.7 fold in celery leaves, as 
compared to the control. The accumulation of this 
nutrient was organ and species dependent (Table 2). 

4. DISCUSSION 

In this study, two apiaceous species grown in 
hydroponic culture were subjected to induced iron 
deficiency during one month. Significant differences 

      
Figure 2: Chlorophyll and carotenoid content of the young leaves of P. crispum and A. graveolens grown during 30 days on a 
control nutrient solution (C), containing 48.8µM Fe, or under indirect iron deficiency (DI), containing 48.8µM Fe + CaCO3. Values 
are means of 8 replicates ± standard deviation. Different letters correspond to significantly different values at P<0.05. 

 

      
Figure 3: Changes in nutrient solution pH of control and deficient plant during the treatment period. Values are means of 8 
replicates ± standard deviation. Different letters correspond to significantly different values at P<0.05. 
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between the two species in their capacity to acidify the 
rhizosphere, to maintain chlorophyll and iron content, 
also to develop root length were recorded. As shown 
above in our results, plant growth (leaf number, shoot 
length and biomass production) was significantly 
restricted in both species subjected to induced iron 
deficiency but with higher tolerance of celery. These 
results are in agreement with previous reports in 
chickpea [12], grapevine [13], pea [14], citrus [15] and 
medicago [16]. The lower biomass production observed 
under Fe deficiency is also partly ascribed to a 
decrease of chlorophyll concentration, as reflected by 
the yellowing of the youngest leaves of Fe deficient P. 
crispum and A. graveolens plants. Our results showed 
that chlorophyll content decreased significantly in P. 
crispum compared to A. graveolens. Our finding agrees 
with those obtained by [17, 18, 19]. Spiller and Terry 

[20] suggests that iron deficiency retards not only 
chlorophyll synthesis but also the synthesis of the 
complete light harvesting apparatus, including 
chloroplast membranes and the chlorophyll protein 
complexes, carotenoids, reaction center and electron 
carriers associated with them. As documented in 
several others species [14, 17], iron deficiency affected 
mineral nutrition in plants such as iron, zinc and copper 
content. The observed decline of iron content was 
more severe in celery organs than parsley. However, 
an accumulation of zinc and copper was observed in 
leaves and roots. The decrease of iron content, under 
limited conditions of this element, could be attributed to 
the bicarbonate effect [21]. Cohen et al. [22] reported 
that under iron deficiency, plants are able to uptake 
other micronutrients such as Zn and Cd. 

 

Table 1: Plant Growth in P. Crispum and A. Graveolens Grown during one Month on a Control Nutrient Solution 
Containing 48.8µM Fe (C: Control) or in the Presence of Fe and CaCO3 (DI: Indirect Deficiency) 

Species  P. crispum  A. graveolens 

Treatments C DI C DI 

Leaves number 48.37 ± 9.16b 45.87±14.74b 42.25 ± 4.43a 41.12±6.31a 

Shoot length(cm) 38.71 ± 3.18a 39.30±6.71a 55.55 ± 3.35a 52.55±3.92a 

Root length (cm) 20.68 ± 2.34a 23.12±5.29ab 27.71 ± 6.48ab 30.22±8.16ab 

Leaves DW (g) 3.49 ± 0.66b 2.95 ±0.52a 2.22 ± 0.55b 2.04 ±0.23a 

Stem DW (g) 2.8 ± 0.58b 2.48 ±0.58a 2.59 ± 0.40b 2.42 ±0.28b 

Root DW (g) 1.72 ± 0.58b 1.49 ±0.58a 1.08 ± 0.11a 1.05 ±0.15a 

Different letters correspond to significantly different values at (p<0.05) according to Duncan test. 

 

Table 2: Iron, Zinc and Copper Concentration (µg g–1DW) in Shoots and Roots of P. Crispum and A. Graveolens Plants 
Grown for One Month under Iron-Sufficient (C: Control) or Iron-Deficient Medium (DI: Indirect Deficiency) 

Species  P. crispum  A. graveolens 

Treatments C DI C DI 

 Fe    

Leaves 6.99 ± 0.83b 8.23±1.2b 4.35 ± 0.43b 4.06±0.52b 

Stems 4.08 ± 1.1a 4.02±4.62a 3.73 ± 0.91b 2.25±0.94a 

Roots 11.63 ± 2.84b 9.64±1.45b 9.55 ± 3.02b 7.39±6.83a 

 Zn    

Leaves 1.7 ± 0.19a 1.54±0.94a 1.12 ± 0.68a 1.08±0.70a 

Stems 1.88 ± 1.36a 1.67±1.15a 1.22 ± 0.41a 0.772±0.14b 

Roots 1.67 ± 0.20a 2±0.28b 1.19 ± 0.15a 1±0.26a 

 Cu    

Leaves 0.655 ± 0.15a 0.55±0.41a 0.27 ± 0.17a 0.737±0.57b 

Stems 1.06 ± 1.45a 0.23±0.06b 0.297 ± 0.05a 0.212±0.08a 

Roots 1.49 ± 0.80a 3.86±0.80b 11.73 ± 22.26b 1.96±0.49a 

Values are means of 4 ± S.D. Different letters correspond to significantly different values at (p<0.05) according to Duncan test. 
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As an adaptive trait used by plant to uptake 
nutrients from the soil, root length was increased 
under Fe deficient conditions. In our work, such result 
was recorded in both species which is in agreement 
with works on several plants species [23, 24]. Roots, 
the first organ in direct contact with the rhizosphere, 
are able to change the physicochemical properties of 
the rhizosphere via the release of H+ protons or the 
exudation of organic compounds. pH decrease was 
slightly more pronounced in celery than in parsley. 
Also, changes in pH is considered as the principal 
engine of nutrient uptake for plants [25] because it is 
responsible for the plasma membrane proton motive 
force and leads to the solubility of nutrients. Under 
limited conditions of iron in soils, in strategy I plants, 
the activation of plasma membrane proton pumps (H+-
AT Pases) induced an establishment of an 
electrochemical gradient [26, 27] and lead to an 
increase of ferric Fe solubility [28]. Lowering the 
rhizosphere pH is considered as a good criterion of 
tolerance to iron deficiency. 

CONCLUSION 
The present work clarified some morphological and 

physiological responses of two apiaceous species to 
indirect iron deficiency. We could conclude that A. 
graveolens proved to be relatively more tolerant to iron 
deficiency than P. crispum. It revealed able to maintain 
plant growth and to acidify the culture medium. Future 
research should be directed to investigate biochemical 
and molecular responses.  
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