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Abstract: Salt stress, one of the most serious abiotic stresses, leads to a reduction in plant growth, development, and 
yield in many parts of the world. The purpose of this study was to determine the morphological, physiological, and 
biochemical salinity tolerance of nine local Turkish pepper genotypes and one variety. Greenhouse plants at the four-leaf 
stage were subjected to salt stress by adding a total of 150 mM NaCl to the nutrient solution over three days. The growth 
parameters, ion regulation, photosynthetic pigments, and antioxidative enzyme activities were investigated, as were the 
malondialdehyde, flavonoid, and phenolic contents. The growth parameters, K+ and Ca2+ contents, and total chlorophyll 
and carotenoid contents decreased under salt stress. Conversely, the Na+ and Cl– contents and the total flavonoid and 
phenolic compounds increased under salt stress in all of the genotypes; lipid peroxidation also increased in all 
genotypes. Antioxidant enzyme activities, however, increased more under salt stress in the tolerant genotypes than it did 
in the less tolerant plants. The results show that genotypes BIB-6 and BIB-8 were more salt tolerant than the other 
genotypes and have high potential as genetic material in future breeding programs. 
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INTRODUCTION 

Although both biotic and abiotic stressors can 
reduce crop yield, abiotic stresses are the primary 
inhibitor; they limit potential production by up to 70% 
[1]. Salinity is a significant abiotic stress factor that 
threatens agriculture in both arid and semiarid 
environments and affects over 20% of the world’s 
irrigated land [2]. Salt stress results in alteration of a 
plant’s biochemical, physiological, and morphological 
responses and thus reduces growth, yield, biomass, 
and quality. Under salt stress, plants often experience 
water relation disturbances and develop a buildup of 
toxic ions. In response to salinity-induced osmotic 
stress, plants develop an osmotic stress tolerance by 
accumulating organic osmolytes or ions or both in order 
to maintain water absorption going on [3]. In addition, 
salt-tolerant plants may exclude toxic ions (Na+, Cl−, 
etc.) to the apoplast or sequester them in the vacuole 
in order to avoid saline-induced toxicity [3, 4]. Salinity 
causes excessive accumulation of reactive oxygen 
species (ROS), which may result in lipid peroxidation, 
protein oxidation, enzyme inactivation, or in damage to 
interactions with other essential plant cell components 
or to DNA [5]. High concentrations of salt may result in 
stomatal closure, which reduces the availability of 
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carbon dioxide in the leaves and causes carbon fixation 
inhibition, resulting in exposure of chloroplasts to high 
levels of excitation energy [4, 5]. This leads to 
increased generation of ROS (including hydroxyl 
radical, hydrogen peroxide, singlet oxygen, and 
superoxide) [5]. In order to minimize the toxic effects 
caused by ROS, plants possess various kinds of 
enzymatic antioxidants, including ascorbate peroxidase 
(APX), catalase (CAT), glutathione reductase (GR), 
and superoxide dismutase (SOD); they also utilize 
nonenzymatic antioxidants (e.g., ascorbate, 
carotenoids, reduced glutathione, proline, amides, 
gamma-aminobutyric acid, glycine betaine, and 
tocopherol) [4]. 

Pepper is considered one of the most important 
crops in the world and has been classified from 
moderately sensitive to sensitive to salt stress. 
However, there are also variations within the pepper 
species regarding salt tolerance and sensitivity [6, 7]. 
Screening plant species for salinity tolerance or the 
genetic potential to develop tolerance are promising 
approaches to developing salt-tolerant commercial 
cultivars. Thus, this study attempts to identify the 
tolerance level and biomarkers of various pepper 
genotypes, which will undoubtedly help breeding 
programs produce new genotypes with enhanced salt 
tolerance. These plants, because of their ability to 
overcome abiotic stresses, may be used to extend 
cultivated property in areas with a salinity problem [8]. 
This work evaluates the effects of salt stress on the 
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morphological, physiological, and biochemical 
characteristics of plants and identifies the degree of 
salt tolerance of the studied genotypes. 

MATERIAL AND METHODS 

The experiments used nine pepper genotypes and a 
variety (BIB-10: Demre), the seeds of which were 
germinated in a 2:1 mixture of peat and perlite. 21 days 
after sowing (DAS), the seedlings were transferred to 
plastic pots (12 L) containing a 2:1 mixture of peat to 
perlite. They were then housed in a greenhouse with 
day/night temperatures of 26/18 ± 2 °C and a relative 
humidity of 65% ± 5. The seedlings were watered with 
nutrient solution, the composition of which (M) was as 
follows: Ca(NO3)2 4H2O, 3.0x10-3; K2SO4, 0.90x10-3; 
MgSO47H2O, 1.0x10-3; KH2PO4, 0.2x10-3; H3BO3, 
1.0x10-5; 10-4 FeEDTA, MnSO4 H2O, 1.0x10-6; 
CuSO45H2O, 1.0x10-7; (NH)6Mo7O24H2O, 1.0x10-4; 
ZnSO4 7H2O, 1x10-4 [9]. Each pot contained four 
plants, and each experiment included four replications 
(16 plants of each genotype were used in each 
treatment) [10]. Starting at 37 DAS, a salt (NaCl) 
treatment was added to the irrigation solution in daily 
gradual increments of 50 mM NaCl; it reached 150 mM 
NaCl, the desired salt level, on the third day. The 
amount of water applied was calculated based on the 
ratio of water drained to water applied, and free 
drainage was utilized under the pots to prevent 
excessive salt accumulation. The water collected in the 
pots was measured with EC meters after each irrigation 
to ensure a constant dosage of EC. Both the salt-
treated and untreated (control) plants were kept under 
these conditions for 27 days, at the end of which they 
were harvested for physiological examination (i.e., 
fresh and dry shoot weights, the diameters, lengths, 
and number of leaves per plant, leaf area per plant, the 
amount of photosynthetic pigments, and the Na+, K+, 
Ca2+, and Cl- ion content) and biochemical analyses for 
total phenolic content (TPC), flavonoids, lipid peroxide 
content (malondialdehyde, MDA), APX, CAT, GR, and 
SOD. The third fully expanded leaf from each plant was 
used for the biochemical parameters.  

Growth parameters: four randomly selected plants 
from the control and salt-stressed populations of each 
genotype were weighed with a digital balance (±0.0001 
g) to obtain their fresh weights. Samples were then 
dried in an oven at 65°C for 48 h and reweighed to 
obtain dry weights. Leaf area was determined through 
use of a leaf area meter (CI BIO Science CI 202, CID, 
Camas, Washington, USA). 

In order to determine ion content, leaf samples were 
dried in an oven at 65 °C. The concentrations of Na+, 
K+, and Ca2+ were determined using an Inductively 
Coupled Plasma Emission Spectrometer (ICP model 
Liberty 200, Varian Australia Pty. Ltd., Australia). 
Before the analysis, 50 mg of ground dry material was 
digested by adding 2 mL concentrated HNO3 (65%) 
and 1 mL H2O2 (30%) for 30 min at 2600 kPa (80 psi) 
in a MDS-2100 microwave oven (CEM Corp., USA). 
After digestion, deionized water was added until each 
sample had a final volume of 25 mL. The Cl 
concentration in the dry tissue samples was 
determined using titrimetric analysis with silver nitrate 
(AgNO3) according to the Mohr method [11].  

The total phenolic content was determined using a 
Folin-Ciocalteu reagent. Gallic acid was used as a 
standard [12]. Colorimetric assay was used to establish 
the flavonoid content [13]. A mortar and pestle, along 
with an extraction buffer (5 mL) comprised of a 
potassium-phosphate buffer (50 mM, pH 7.6) and 
disodium ethylene diamine tetra acetate (0.1 mM), was 
used to extract the enzyme from 0.5 g of leaf tissue. 
After centrifugation of the homogenate at 15,000 × g 
for 15 minutes, the supernatant fraction was then used 
for the enzyme assay. The SOD, CAT, APX, and GR 
enzyme activities were determined according to 
Cakmak and Marschner [14]. The amount of MDA was 
determined via the thiobarbituric acid reaction, a 
measure of lipid peroxidation [15].  

Regarding statistical analysis, the experimental plot 
design was randomized and included four replications. 
A comparison of the control and treated mean values 
was performed via the least significant difference test. 
Statistical significance was determined as P < 0.05 
using JMP statistical software, ver. 5.1 (SAS Institute 
Inc., USA).  

RESULTS  

In comparison with controls, plants treated with 
NaCl showed reduced fresh and dry shoot weights, 
lengths, and diameters, diminished leaf numbers, and 
reduced leaf area average of genotypes by 50%, 43%, 
38%, 22%, 36%, and 35%, respectively (Figure 1). The 
pepper genotypes exhibited differences in their 
responses to salinity that were statistically significant: 
the fresh and dry weights were decreased by 12% and 
28% in BIB-6 and by 19% and 13% in BIB-2; the 
decrease in fresh and dry weight reached 76% in 
genotype BIB-8 and 55% in genotype BIB-10. The 
decrease in shoot height and diameter also varied. 
These decreases were lowest in genotypes BIB-6 
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(14%) and BIB-7 (28%) and were highest in BIB-4 
(51%) and in BIB-1 (47%). 

In comparison to the untreated plants, the average 
Cl– and Na+ contents in salt-treated plants increased by 
1016% and 1686%, respectively (Figure 2). Genotypes 
that were selective for toxic Na+ were BIB-7 (increase 
of 658%), BIB-6 (increase of 1119%), and BIB-2 
(increase of 1305%). Genotypes with the highest Na+ 
contents and highest variation were BIB-9 (increase of 
3493.33%), BIB-4 (increase of 3111.76%) and BIB-3 
(increase of 1859.09%). The lowest Cl– content was 
obtained in genotypes BIB-6 and BIB-8 (Figure 2). Salt 
treatment also decreased K+ and Ca2+ contents in the 
pepper genotypes when compared with the controls: 
while the K+ and Ca2+ decreased 5%–11% in 
genotypes BIB-2, BIB-6, and BIB-8, the reduction 
ranged between 54%–69% in genotypes BIB-5, BIB-9, 
and BIB-10. Following salinity stress, BIB-6 and BIB-8 
had significantly higher K/Na and Ca/Na ratios than did 
other genotypes (Figure 2).  

Total chlorophyll and carotenoid contents 
decreased with salinity. Among the ten studied 
genotypes, the smallest reductions were observed in 
BIB-8 (16% and 6% decreases) and BIB-6 (22% and 

8% decreases) (Figure 3). The sharpest declines were 
observed in BIB-4 (56% and 67%), BIB-5 (48% and 
61%), BIB-9 (46% and 70%), and BIB-10 (41% and 
67%).  

Salt-induced oxidative stress was confirmed through 
measurement of MDA level, which is indicative of 
membrane lipid peroxidation (Figure 3). A significant 
increase in its content was averaged by 14.9 µmol g–1 
fresh weight (205% increase) relative to the controls. 
The highest increase was shown in genotypes BIB-9, 
BIB-3, and BIB-10 at 374%, 337%, and 305%, 
respectively. The salt-triggered MDA content was lower 
in genotypes BIB-6, BIB-7, and BIB-8 than in other 
genotypes; it ranged between 80%–124%.  

Under salt stress, total phenolic and flavonoid 
contents were increased by 32% and 31%, respectively 
(Figure 3). The highest production of these 
nonenzymatic antioxidants was shown in genotypes 
BIB-8 (58% and 62%) and BIB-6 (55% and 40%), 
whereas their levels remained between 1% and 4% in 
genotypes BIB-4, BIB-9, and BIB-10. The activities of 
the antioxidant enzymes (APX, CAT, GR, and SOD) 
are presented in Figure 4. The maximum mean values 
were obtained from the salt-stressed BIB-8 genotype. 

 

Figure 1: Change in the growth parameters of pepper genotypes grown under control and salt treatment. Each value is the 
mean of four replicates ± SD. For each parameter, different letters represent statistically significant differences at P ˂ 0.05 
according to LSD test. 
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SOD, CAT, GR, and APX activity in plants treated with 
saline increased by 323%, 356%, 454%, and 267%, 

respectively, when compared with the controls. 

 

Figure 2: Change in Na, Cl, K, Ca, K/Na, and Ca/Na content of pepper genotypes grown under control and salt stress. Each 
value is the mean of four replicates ± SD. For each parameter, different letters represent statistically significant differences at P 
˂0.05 according to LSD test. 

 

Figure 3: Change in total chlorophyll and carotenoids, MDA, total phenolic and flavonoid contents of pepper genotypes grown 
under control and salt stress. Each value is the mean of four replicates ± SD. For each parameter, different letters represent 
statistically significant differences at P ˂0.05 according to LSD test. 
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DISCUSSION  

Twenty-seven days of salt stress significantly 
affected the growth characteristics of the ten studied 
pepper genotypes; in accord with previous publication, 
the response varied by genotype [8]. The lowest 
reduction in the measured growth parameters (highest 
relative salt tolerance) was observed in the BIB-6 and 
BIB-8 genotypes. In contrast, BIB-4, BIB-9, and BIB-10 
exhibited the greatest reduction. High salinity affects 
two main mechanisms in plants. One, it disturbs the 
capacity of roots to extract water from the soil (i.e. 
osmotic stress), which in turn results in a reduction of 
growth parameters such as fresh mass. Two, high 
concentrations of toxic ions in cells result in an 
inhibition of many physiological and biochemical 
processes, such as nutrient uptake and assimilation as 
well as photosynthesis, which reduces plant growth, 
development, odds of survival [16]. 

In support of our interpretation, genotypes BIB-3, 
BIB-4, and BIB-9 had the highest Na+ accumulation, 
while BIB-6 and BIB-8 showed the lowest Cl- content 
under salt stress; these findings confirm the potential 
salt tolerance of the latter two genotypes. Salt induced 
a significant Na+ and Cl− influx in the salt-sensitive 
genotypes, which most probably caused their 
decreased growth [4, 5, 17]. Although salt stress 
reduced the uptake of K+ and Ca2+ in the studied 
pepper genotypes, the reduction of both beneficial 
elements was lower in BIB-6 and in BIB-8. Higher 
uptake and accumulation of K+ in the presence of 
salinity is regarded as a sign of increased tolerance to 
salt. This is because K+ plays an important role in 

stomatal aperture mechanics, osmoregulation, and the 
prevention of Na+ influx into roots and shoots [18]. 
Increased uptake of K+ led to a higher K/Na ratio in 
response to NaCl treatment in BIB-6 and in BIB-8; this 
ratio has also been reported as a determinant of salt 
tolerance [19]. Calcium plays an important role in 
several physiological plant processes, such as cell 
membrane protection, ion transport, and the 
translocation of carbohydrates and proteins as well as 
their storage during seed formation [18]. Plants with the 
capability to take up more Ca2+ from the growth 
medium, therefore, have higher Ca/Na ratios, a trait 
that is also correlated with successful adaptation to 
saline environments [18, 20].  

Salt treatment led to an overall reduction in the 
photosynthetic pigments, chlorophylls, and carotenoids 
in the ten pepper genotypes. The decreased 
chlorophyll content might be due to salt-induced 
increases in the activity of the chlorophyll degrading 
enzyme, chlorophylase [21]. Carotenoid content is also 
an aspect of salt tolerance; carotenoids play a critical 
role in light harvesting and oxidative damage protection 
by deactivating singlet oxygen, satisfactorily meeting 
the chlorophyll excited triplet state, and enhancing 
carotenoid synthesis in order to reduce photo damage 
caused by the salt-induced arrest of cell division [22, 
23]. In the genotypes BIB-6 and BIB-8, the chlorophyll 
and carotenoid contents were less affected by the NaCl 
treatment.  

Salt stress results in the formation of ROS that 
cause irreversible lipid and protein damage. Levels of 
lipid peroxidation, an indicator of oxidative stress, were 

 

Figure 4: Change in SOD, CAT, APX and GR activities of pepper genotypes grown under control and salt stress. Each value is 
the mean of four replicates ± SD. For each parameter, different letters represent statistically significant differences at P ˂ 0.05 
according to LSD test. 
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lower in BIB-6 and BIB-8 than in the other genotypes 
under salt stress. These decreased levels may be 
imputed to varieties as a result of their genotypic ability 
to scavenge ROS and protect against oxidative 
damage [24]. This assumption is in agreement with the 
higher antioxidant molecules and enzyme activities, 
discussed below, that were observed in both 
genotypes. 

In general, phenolic compounds in plants are 
produced through the phenylpropanoid pathway, and 
they can be induced by environmental stresses and 
elicitors [10]. Mansori et al. [25] reported that 
polyphenols represent a large family of plant secondary 
metabolites and that they may act as antioxidants to 
protect against oxidative stress. Therefore, the 
observed increase in the total phenolic and flavonoid 
contents after salt stress, which was most marked in 
the BIB-6 and BIB-8 genotypes, can be explained by 
enzyme activation linked to their biosynthesis and may 
be an aspect of the salt tolerance of those genotypes. 

A direct consequence of salinity stress in plants is 
the induction of antioxidant enzyme activities to 
minimize the damage caused by ROS [26]. Increased 
accumulation of ROS pose a challenge to the plant 
cells by inducing the peroxidation of lipids and proteins, 
the breakage of nucleic acids, limited efficiency of 
enzymes, and programmed cell death, which altogether 
eventually results in complete cell death [27, 28]. For 
plants to combat these adverse effects and minimize 
ROS levels in response to salt stress, they elevate 
antioxidant enzymatic expression and activity (including 
SOD, GR, POX, APX, and CAT) as well as produce 
enhanced levels of nonenzymatic compounds [29]. 
Several studies have demonstrated the relationship 
between tolerance to salinity and increased antioxidant 
enzyme activity [4, 30]. The activities of SOD, APX, 
GR, and CAT were more highly elevated in the BIB-6 
and BIB-8 genotypes (177%–530%) than in the other 
salt-treated genotypes. It appears that BIB-6 and BIB-8 
induce antioxidant enzymes more efficiently in order to 
mitigate oxidative stress and lipid peroxidation, which 
consequently reduces the growth inhibition triggered 
under saline conditions. Likewise, Mishra et al. [31] 
proposed that a higher antioxidant redox status and 
regulated elevation of the levels of GR, GPX, CAT, 
APX, and SOD activities could function as important 
predictive factors of tolerance to salinity amongst Indica 
rice seedlings. Further, Hand et al. [32] indicated that 
salt-tolerant pepper cultivars induce the antioxidative 
enzyme system more efficiently in response to salinity 
stress.  

In conclusion, salt stress caused stunted growth, 
reduced photosynthetic pigment, elevated Na+ and Cl+ 

concentrations, and increased oxidative stress in the 
ten studied pepper genotypes. However, these harmful 
effects were much lower in the genotypes BIB-6 and 
BIB-8. Additionally, these two genotypes exhibited 
higher uptake amounts of K+ and Ca2+, enhanced 
levels of total phenolic compounds and flavonoids, 
increased induced antioxidant enzyme activity, and 
lower MDA content. Overall, these responses 
established BIB-6 and BIB-8 as the most salt-tolerant 
genotypes. This suggests their potential for cultivation 
under salt stress as well as their suitability for use as 
germplasm material in future pepper breeding 
programs. 
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