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Abstract: Salinity stress significantly abridged the productivity of global crops. Developing and improving the salinity 
stress-tolerant species is urgent to continue the food supply in the coming decades; otherwise many individuals might 
die due to hunger or food insecurity. The genome of plants under saline conditions represents physiological alterations; 
however, it does not represent the change of protein level reflected by corresponding gene expression at the 
transcriptome level. While proteins are more reliable determinant since they are directly involved in shaping salinity 
stress-adapted novel phenotype of physiological traits. Moreover, protein profiles display greater changes then the 
transcript levels. Therefore, exploring the protein complement of the genome would be naturalistic to elucidate the 
mechanism of salt tolerance in plants. In this review, an attempt is made to present the role and implementation of 
proteomic studies in response to plant salinity stress and its significant contributions so far made for better 
understanding the complex mechanism of the plant under salinity stress. Moreover, brief characteristics of plants in 
saline conditions and the limitation of proteomic studies are further discussed. 
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1. INTRODUCTION 

Producing more plants, especially crops and foods 
for the growing world population is a necessity to 
escape from foodless days in the upcoming decades 
for many individuals, especially in developing countries. 
However, the major abiotic stress factors, 
predominantly salinity stress lead to the major 
reductions of the yield of crops. About 
1.125×107square kilometres of the world’s land area is 
salt-affected (approximately 8.5%), and if the forest, 
wetlands, unsuitable, high biodiversity land area 
excluded the total salt-affected area reduced to 
9.71×106 square kilometres. Among the salt-affected 
land, 5% highly, 10% extremely, 20% moderately and 
65% slightly salt-affected lands [1, 2]. 

There are no continents left from the adverse effect 
of soil salinity and the areas salt-affected are 
distributed into 17 regions of the world’s land area 
namely (descending order based on the total salt-
affected land) the Middle East, Oceania, North 
America, Former USSR, East Asia, South America, 
West Africa, the USA, East Africa, South Asia, South 
Africa, Canada, Southeast Asia, Central America, East 
Europe, West Europe and Japan [1]. Moreover, due to 
high salinity stress, approximately 20% of irrigated land 
is salt-affected (4.5×105 out of 2.27×106 square 
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kilometres) [3, 4]; yearly 1.5×104square kilometres of 
lands is becoming useless for agricultural production, 
and for the continuation of such increased soil 
salinization of arable land would have devastating 
worldwide effects and resulted up to 50% land loss by 
the year 2050 [1, 5]. 

Since the salinity stress severely affected the yield 
of crops, it has a high local impact on economic loss. 
An estimation by Ghassemi and his colleagues 
mentioned that the global income loss was about $US 
11400 million and $US 1200 million every year in 
irrigated and non-irrigated lands, respectively because 
of salinity stress [6]. In fact, the salinity stress threatens 
the sustainability of the agricultural industry. Soil can 
be salinized by both natural and human factors. 
Primarily, natural factors including weathering of parent 
material, deposition of sea salt carried in wind and rain 
and inundation of coastal land by tidal water are the 
major causes of soil salinity. While human factors 
induced secondary soil salinization that includes the 
rise of the water table due to excessive irrigation using 
underground water, irrigation with salt-containing water 
and poor drainage [1]. 

A soil condition characterized by a high 
concentration of soluble salt that significantly reduces 
the yield of most crops is called salinity. If the electric 
conductivity of saturation extract (ECe) of soils is 4 
dSm-1 or more at 25°C, the soils are considered as 
saline soils. Approximately 40 mM NaCl that generates 
approximately 0.2 MPa osmotic pressure is equivalent 
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to ECe of 4 dSm-1 [7]. Most of the crops are saline 
sensitive. Some of the crops and forages are 
moderately tolerance or moderately sensitive and very 
few are tolerant species, such as (threshold ECe of 
dSm-1) Triticum turgidum (5.9), T. aestivum (8.6), Beta 
vulgare (7.0), Hordeum vulgare (8.0), Secale cereal 
(11.4), Gossypium hirsutum (7.7), 
Cyamopsistetragonoloba (8.8) [8]. Salinity stress can 
cause both hyper-ionic and hyperosmotic stress which 
can lead to plant demise. The variation of responses of 
crops to salinity stress greatly differs because of their 
strategies either to stress escape or to stress 
resistance characteristics [9]. Interestingly, halophytes 
are well-adapted and thrive under high salinity by using 
two strategies, salt tolerance, and salt avoidance. 
Generally, halophytes follow three mechanisms of salt 
tolerance; reduction of the Na+ influx, 
compartmentalization, and excretion of Na+ [10]. 
Therefore, understanding the mechanisms of plant 
salinity stress is crucial in order to develop salinity 
stress-tolerant species to meet the food supply for the 
increasing population.  

Understanding the responses of plants to salinity 
stress is arduous. Although the gene expression of 
plants under saline conditions can delineate the 
responses of plants, the alterations of gene expression 
at the transcript level do not reflect the changes at the 
protein level [11, 12]. While proteins are more reliable 
determinant since they are directly involved in shaping 
novel phenotype by adjustment of physiological traits to 
the altered environment. Moreover, protein profiles 
display greater changes than the transcript levels. Both 
structural proteins and functional proteins involved in 
the regulation of plant epigenome, transcriptome, and 
metabolome directly response to both plant 
developmental and health stage as well as ambient 
environment to shape phenotype of plants. Additionally, 
protein function is not dependent only on its molecular 
structure, but also on its cellular localization, post-
translational modifications and interacting partners [13-
16]. Therefore, exploring the protein complement of the 
genome would be naturalistic to elucidate the 
mechanism of salt tolerance in plants. 

Proteomic studies revealed the whole proteome of 
an organism and potential protein markers whose 
changes in abundance determine the quantitative 
changes in physiological traits that can be used for a 
description of genotype's level of stress tolerance. In 
this review, studies dealing with plant proteome 
changes in response to salinity stress are focused to 
describe the role of proteomics to the understanding 
mechanism of plant salinity stress. Additionally, the 
limitation of proteomic studies further discussed. 

2. BRIEF MAJOR CHARACTERISTICS OF PLANT 
SALINITY STRESS 

Elevated levels of salinity deteriorate soil structure 
and impede desirable air-water balance that is 
essential for normal biological processes of the plants. 
Salinity stress severely affects morphological and 
agronomical traits involving plant growth, development 
and productivity that include leaf colour and area, 
number of leaves, plant height, root length and shape, 
fresh and dry mass, and moisture contents [17, 18], 
number of flowers, number of branches and head 
diameter, and peduncle length of plants [19]. 
Dehydration, necrosis, wilting, chlorosis, and 
abscission of leaves as well as reduced plant height, 
root length, leave length and width were observed in 
the higher concentration of NaCl [17]. Salinity stress 
also elicited the production of metabolites [20]. 

Salinity stress contributes a high concentration of 
salt ions-mainly Na+ and Cl−, as well as some other salt 
ions, such as Ca2+, K+, CO3

2−, NO3
−, SO4

2−— in soil-
water solution, resulting decreased soil-water potential 
reveals. Hence, a decrease in water uptake by roots 
due to the osmotic pressure induced by high salinity on 
plant cells. Habitually, the concentration of some ions, 
particularly Na+ is actively maintained at the low level in 
the plant cell cytoplasm through ATP-dependent ion 
pumps, such as Na+/H+-ATPases, V-ATPases, and 
inorganic pyrophosphatases (iPPases). In contrast, at 
the high concentration of salt ions induced osmotic 
stress and a disbalance in intracellular ion homeostasis 
that lead to an accumulation of several osmolytes, for 
example, raffinose-derived oligosaccharides, glycine 
betaine, proline as well as high molecular hydrophilic 
proteins from late embryogenesis-abundant (LEA) 
super family in the osmotic adjustment of cell 
cytoplasm. The osmotic adjustment also leads to 
enhanced sequestration of inorganic ions in the central 
vacuole. Furthermore, the osmotic effect is rapid, 
usually first few hours after introducing to the stress 
environment. It is common to all type of dehydration 
stresses, while the severity of the ionic effect is 
increased with time and specific to salinity stress (for 
review, see [4, 21-23]). 

3. TOOLS AND TECHNOLOGIES OF PROTEOMIC 
STUDIES 

In general, there are two approaches performed in 
the proteomic analysis of samples. The first one is the 
most commonly used method (1) gel-based proteomic 
analysis and (2) the second one is the comparatively 
less common method- gel-free analysis in the field of 
plant science. The overall workflow of proteomic 
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analysis is shown in Figure 1. Gel-based analysis 
solely depends on the two-dimensional polyacrylamide 
gel electrophoresis (2-DE). Nowadays differential in-gel 
electrophoresis (DIGE) is used to avoid the problems 
associated with 2-DE. Gel-free technologies include 
multidimensional protein identification technology 
(MudPIT) for peptide separation, isotope-coded affinity 
tagging, isobaric tagging for relative and absolute 
quantification, stable isotope labelling of amino acids in 
cell culture, isotope-coded protein labelling for peptide 
quantification, and label-free methods (peak integration 
or spectral counting) [24]. 

4. PROTEOMIC STUDIES IN RESPONSE TO PLANT 
SALT STRESS 

At the first Siena meeting in 1994, Marc Wilkins 
coined the term ‘proteome’ for the first time, a scientific 
buzzword that is now associated with 133,606 
publications in the field of proteome/proteomics as 
currently listed at the National Center for Biotechnology 
Information (NCBI) website, of which 15,642 
publications are associated with proteome/proteomics 
with stress studies, and only 543 publications represent 
the proteome/proteomics studies associated with plant 
salinity stress [28]. It refers to a large-scale 
comprehensive study of a specific proteome (the 

 

Figure 1: The overall workflow of proteomic analysis. SDS-PAGE: Sodium Dodecyl Sulphate-Polyacrylamide Gel 
Electrophoresis; 2D-PAGE: Two Dimensional Gel Electrophoresis; DIGE: Differential Gel Electrophoresis; MALDI-TOF-MS: 
Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight-Mass spectrometry; LC-MS/MS: Liquid Chromatography with tandem 
mass spectrometry; MudPIT: multi-dimensional protein identification technology; PDB: Protein Data Bank; PDBe: Protein Data 
Bank in Europe; PDBj: Protein Data Bank in Japan; RCSB: Research Collaboratory for Structural Bioinformatics. The 
information adapted from [25-27].  
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protein complements of the genome) to understand the 
cellular processes [29]. The systematic analysis of 
proteome includes information on abundances of 
protein, variations, and modifications of proteins as well 
as interacting partners and networks of proteins [30]. 

Plant proteome is differentially expressed upon 
exposure to salinity stress. Proteomics has a broad 
spectrum use in protein profiling study of plants under 
stress conditions. It has direct contribution to find 
genes and proteins involved in plant salinity stress 
response and tolerance acquisition process [16, 26, 
31]. Genes encoding proteins for osmolyte synthesis, 
ion channels, receptors, and salt-responsive signalling 
factors or enzymes to salt-sensitive plants can confer 
salinity-tolerant phenotypes [32]. Therefore, 
identification and characterization of salt-responsive 
proteins through the high-throughput proteomics 
studies are the fundamental roots to develop salt-
tolerant plant varieties. 

In the field of plant abiotic stress research, 
comparative analysis of differential expression of 
proteomes between control (non-stressed) plants and 
stressed plants is the most common study. To a lesser 
extent, the comparison of proteomes isolated from two 
different genotypes or plant species with contrasting 
levels of salt stress is also studied. The sets of 
proteomes are distinguished focusing on the both 
protein quality and quantity by differential-expression of 
proteomics analysis, which is aimed at the protein 
identification and relative quantitation [26]. Several 
studies related to the comparative analysis of proteome 
between plants subjected to salt stress and control 
treatments have been studied in economic crops: rice 
[33-37], wheat [38-42], barley [43-48], tomato [49-51], 
soybean [52-55], and model plant Arabidopsis thaliana 
[56-58] and medicinal plants: Andrographis paniculata 
[59, 60], Brassica napus [61], Bruguiera gymnorhiza 
[62, 63], Cucumis sativus [64], Kandelia candel [31, 65, 
66], Suaeda aegyptiaca [67], Suaeda salsa [68] and 
Vitis vinifera [69]. The proteomics approach has long 
been dominated by the techniques of two-dimensional 
gel electrophoresis (2DGE) followed by protein 
identification using mass spectrometry (MS) analysis 
such as matrix-assisted laser desorption ionization-
time-of-flight/time-of-flight mass spectrometry (MALDI-
TOF/TOF-MS). 

5. ROLE OF PROTEOMICS IN ENHANCING 
BIOLOGICAL DISCOVERIES 

Proteomic technologies are becoming widespread 
in their use in various fields of biological sciences 

including identification of stress-responsive proteins to 
develop the stress-tolerant plant, the discovery of cell-
surface markers/biomarkers and drug development [70, 
71]. The goal of proteomics is to provide 
complementary and critical information by revealing the 
regulation, quantities, activities and interaction of 
proteins that are present in complex biological 
systems— whole organism, specific tissue or cellular 
compartment— under certain conditions in the given 
time [72]. 

In recent years, proteomics is active in plant 
genomics area, where proteomic tools are used to 
identify proteins derived from mixtures extracted from 
tissues/cells in response to developmental and certain 
environmental conditions and to quantify expression 
levels of those identified proteins [25]. Using these 
techniques, researchers can simultaneously display 
and determine thousands of proteins per experiment. 
Moreover, it is possible to detect and estimate reliably 
the relative expressions of those differentially 
expressed proteins in different conditions and measure 
absolute proteins expression of single proteins in a 
complex mixture [73]. 

Proteins as the cellular building blocks directly 
assert the potential function of genes via enzymatic 
catalysis, molecular signalling, and physical 
interactions. However, structure, functions, abundance, 
and the number of proteins in an organism cannot be 
predicted although mRNA levels accurately measured 
using DNA chip array [74, 75]. mRNA is not always a 
good reflection of the level of proteins present in the 
cell. Expression of many proteins may be regulated at 
the levels of translation and the rates of degradation of 
mRNA and proteins differ significantly between genes. 
The change of expressions could be due to protein 
modifications, proteolysis, subcellular localization, or 
interaction with other proteins [74]. Additionally, most of 
the post-translational modifications cannot be predicted 
from genomic or mRNA data. It is important to know 
how proteins interact with each other in a cell and how 
these interactions response to internal and external 
signals. These notable events in the lifetime of proteins 
can only be determined through a proteomics approach 
[74, 76].  

Protein profile or mapping of a cell, tissue, organ, or 
organism is crucial for functional identification of each 
protein and their metabolic pathways in stress 
conditions. It is a valuable natural genetic resource, 
which could be helpful to discover genes and gene 
products conferring tolerance to various stresses [47]. 
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Some of these proteins might be differentially 
expressed upon exposure to adverse environmental 
conditions such as drought, salinity, and temperature 
with a different time course. Therefore, plant proteomic 
studies concentrated on profiling the proteins of whole 
plants or various parts of plants from model plants 
Arabidopsis thaliana and crops [47]. Particularly, this 
technique allowed finding several up and down-
regulated proteins under environmental stresses 
through mass spectrometry analysis. 

6. PLANT PROTEOME RESPONSES TO SALINITY 
STRESS 

Plants under salinity stress alter their gene 
expressions profoundly to acclimatize themselves in 
adverse conditions, which changes the composition of 
plant transcriptome, proteome and metabolome. 
Several studies confirmed that protein accumulation 
changed significantly under stress conditions [31, 36, 
62, 77]. Effects of salinity stress on the proteome 
compositions are studied on main crops and few trees 
including rice [33-37], wheat [38-42], barley [43-48], 
tomato [49-51], soybean [52-55], and model plant 
Arabidopsis thaliana [56-58] and medicinal plants- 
Andrographis paniculata [59, 60], rapeseed- Brassica 
napus [61], Mangrove trees- Bruguiera gymnorhiza [62, 
63], cucumber [64], Mangrove tree- Kandelia candel 
[31, 65, 66], Suaeda aegyptiaca [67], halophytes- 
seepweed [68] and grapes [69]. Zhang et al. (2012) 
reported that more than 2171 salt-responsive proteins 
have been found in shoots, leaves, roots, seedlings, 
radicles, hypocotyls, grains, gametophytes, and 
unicells from different plant species.  

The specific salt-responsive proteins have been 
identified with the help of gel electrophoresis along with 
mass spectrometry as well as bioinformatics tools that 
are applied in identifying gel spot patterns and 
physiological states [78, 79]. The recent advances of 
proteomic techniques have provided a profound 
perception of stress-responsive proteins and 
corresponding mechanisms involved in stress 
response. A cellular defence mechanism is mainly 
involved in the expression of associated genes and the 
corresponding proteins. Three major groups of genes, 
involved in the stress response, are includes [80]: 
genes- (i) that play role in the signalling cascades and 
are associated with transcriptional regulation; (ii) that 
have a role in the protection of membranes and 
proteins; (iii) that are involved in uptake and transport 
of ions and water molecules. Without the help of the 
proteomics, it was almost impossible to determine 
those proteins involved precisely in stress response.  

7. IMPORTANCE OF PROTEOMIC ANALYSIS OF 
SALT-RESPONSIVE PROTEINS 

Proteins, unlike transcripts, are direct effectors of 
the plant stress response. It covers enzymes catalysing 
changes in metabolite levels as well as components of 
transcription and translation machinery [26]. Proteins 
also play a direct role in the stress-acclimation process 
by changing their level in the tissue of stressed plants. 
These changes of protein accumulation under stress 
are closely interrelated to plant phenotypic response to 
stress determining plant tolerance to stress [26, 81, 
82]. In contrast, changes in gene expressions at 
transcriptome levels cannot always show exactly the 
changes at protein levels due to the effects of post-
transcriptional regulatory mechanism such as nuclear 
export and mRNA localization, transcript stability, 
translational regulation, and protein degradation [83-
87]. Therefore, an investigation of plant proteome 
under stress at the protein level is highly important that 
can significantly contribute to our understanding of 
physiological mechanisms, plant phenotypes, and 
cellular and molecular processes underlying plant 
stress response and tolerance, including 
photosynthesis, energy metabolism, ROS scavenging, 
ion/osmotic homeostasis, signalling transduction, 
transcription and translational regulation, and 
cytoskeleton dynamics.  

In the proteomic analysis of salinity stress plants, 
the main purpose is the identification of potential stress 
proteins that can be used as protein markers. These 
markers could be used to know the quantitative data of 
some physiological parameters to the salinity stress 
conditions [26]. The physiological parameters are used 
to measure stress tolerance capacity of a plant species 
[88]. Proteomic studies are also useful for supplying 
clues about proteins of unknown function. Identification 
of salt stress-responsive proteins, especially defence 
proteins and determination of their expression patterns 
in response to stress are crucial to understanding their 
role in salt tolerance mechanism. Understanding these 
protein functions to stress adaptation through 
proteomics analysis would be the basis for effective 
strategies to improve the salt tolerance capacity of 
plants using biotechnological tools [89]. Furthermore, 
low abundant proteins and novel regulatory 
mechanisms in salt stress signalling and metabolism 
pathways could be identified. 

8. LIMITATIONS OF PROTEOMICS ANALYSIS 

The successful implementation of proteomics has 
already been made for a farm animal to establish the 
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nutraceutical properties of the milk proteome [90] or to 
monitor the in vivo performance of livestock animals, 
such as cows, goats, sheep and buffalo [91, 92] as well 
as disease control in human [93-96]. Similarly, the 
proteomics approach is increasingly used in the crops 
plants as well as other plants to understand the 
molecular insight of plants in response to stresses [24, 
33, 34, 38, 39, 43, 44, 49, 52, 65, 97, 98]. However, 
even though a large scale identification of crops 
proteins has been done with the most advanced MS 
technologies and state-of-the-art proteome databases, 
a full proteome coverage has not been achieved yet, 
even in model plants A. thaliana or Oryza species [99]. 
Nearly 300,000 non-redundant peptides matching to 
about 25,000 unique proteins are currently available via 
MASCP Gator, representing 70% of the expected 
Arabidopsis proteome [100, 101]. The current 
limitations of plant proteomics [100] are stated below:  

• A complete proteome yet not established even 
for model plant A. thaliana although large scale 
crops protein identified. 

• Inefficiency to detect low abundance proteins in 
response to biotic and abiotic stress even with 
the most advanced MS instruments. Most cases 
these proteins are the key regulatory proteins to 
the stress conditions. 

• Pre-fractionation of protein extracts combined 
with Ribulose-1,5-bisphosphate carboxylase/-
oxygenase (RuBisCO) depletion can facilitate 
the detection of Leucyl aminopeptidases (LAPs); 
however, protein fractionation and enrichment 
generate additional variability in biological 
samples. Moreover, it is not compatible with 
high-throughput quantitative proteomic methods. 

• Crop breeding purposes, revealing the broader 
relevance of the post-translational modifications 
(PTMs) is crucial which is remains to be 
established. 

• Characterization of the phosphoproteomics has 
a great role in the crop breeding and 
improvement strategies which remains 
challenging because protein phosphorylation is 
generally rapid and transient. 

• Large-scale analyses of the plant acetylome 
have not been reported yet which is an 
interesting post-translational regulatory 
mechanism and can be an interesting breeding 
marker. 

• More economical molecular and functional 
markers are needed that can be discovered 
through proteomic studies; however, the 
potential of crop proteomics for the development 
of novel markers for plant breeding has not been 
fully realized yet. 

CONCLUDING REMARKS 

Proteins play a crucial role in determining the 
stress-adapted novel phenotype of plants that 
developed in response to stress. Therefore, proteomic 
studies could contribute to a better understanding of 
physiological and molecular mechanisms underlying in 
the plant stress response. Salinity stress can modify 
the protein structure and changes the gene 
expressions involved in signalling cascades, 
transcriptional regulation, uptake, and transport of 
water and ion. Proteomics could determine the proteins 
involved in those regulatory pathways. Although there 
are few limitations available in proteomic studies, the 
advances of proteomics would enhance the 
development of salinity stress tolerance plant in near 
future as well as it will depict the way of improving plant 
breeding strategies in response to stress environment. 
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